
Reviewers' Comments:  

 

Reviewer #1:  

Remarks to the Author:  

The manuscript by Lettieri and colleagues investigates the topographic representation of emotional 

states, describing three emotion dimensions (polarity, complexity, intensity) within the right temporo-

parietal junction (TPJ). The study combines behavioral data with the openly available fMRI data from 

the studyforrest project to characterize the representation of emotion dimensions. The motivation and 

results are clearly presented, and additional supplementary analyses on the individual-level provide a 

valuable addition to the current study. However, I have the following methodological suggestions, 

which the authors may wish to consider:  

 

- The 'cortical mantle' is described as the space of the gradients described in the current study. 

However, the analyses appear to be conducted entirely in volumetric space. Have the authors 

considered running their analyses in surface-space to ensure that the affective dimensions map onto 

meaningful spatial representations of cortical space? The morphological characteristics of TPJ, which 

include the superior temporal sulcus, may introduce substantial artifacts into the analysis and results, 

especially due to smoothing over adjacent sulcal walls as well as the functional distinctions across 

sulci. (The results presented in Supplementary Figure 7 suggest that the sulcal position and 

orientation may in fact play a critical role in the main results.) Considering the examples provided by 

the authors of other topographic organizational patterns in the cortex treat the cortical surface as a 

two-dimensional sheet, I would urge the authors to consider the same approach for their analysis 

here.  

 

- A searchlight analysis is conducted to investigate whether the three combined dimensions are also 

represented within other portions of the cortex, however, have the same analyses been applied to 

investigate whether individual dimensions are represented elsewhere? While the mappings may differ, 

there would likely be repeated topographies throughout the cortex, even if TPJ is the only region to 

encode all three dimensions. Further investigation of the presence of these dimensions (in individual 

or combined forms) across the cortical surface would provide greater insight into the neural 

representation of emotional states.  

 

 

 

Reviewer #2:  

Remarks to the Author:  

Lettieri et al. collected emotion ratings from 12 subjects watching clips of Forrest Gump that had been 

overdubbed with Italian. Subjects were instructed to continuously report on their first-person 

subjective experience of six emotions (happiness, surprise, fear, sadness, anger and disgust) during 

the viewing. These ratings were decomposed into principal components, 3 of which were found to be 

individually reliable. Voxel activity in an independent set of 14 subjects watching the same video clips 

(this time overdubbed with German) was then modeled using these six orthogonal components. 

Activation gradients were computed based on the coefficients from the multiple regression. The 

authors report that activity in the RTPJ reflects continuous gradients of encoding strength of the three 

reliable principal components (which they call ‘polarity’, ‘complexity’ and ‘intensity’). These three 

gradients are off-axis relative to each other, potentially allowing the activation of a cortical location in 

the RTPJ to represent a vector in the feature space spanned by the principal components of behavioral 

ratings. These results are potentially interesting, and compatible with previous similar work.  

 

However, the authors claim that the RTPJ encodes people’s first-person subjective experience of 

emotion using this basis set. This claim goes far beyond what can be established from their data.  



 

First, though the authors claim to be studying first person emotional experience, they did not control 

for third-person emotion attributions. The RTPJ plays a central role in the attribution of mental states 

to other agents. The authors used stimuli of emotionally engaging narratives about other people that 

are bound to evoke strong emotion attributions to the portrayed characters. If the emotions attributed 

to the characters positively correlate with the emotions experienced by the raters, it is entirely 

plausible that the signals modeled in the RTPJ reflect third party emotion attributions rather than the 

first person subjective experience of emotion, which is highly consistent with prior work on the RTPJ 

representation of others’ emotions. The manuscript’s introduction does not make a strong case that 

we should expect the RTPJ to encode first person subjective emotional experience based on prior work 

and the study does not adequately demonstrate that first person representation is the correct 

interpretation of the results.  

 

To claim that these results specifically reflect dimensions of first-person emotional experience, the 

authors would need to demonstrate that the results are not due to the fMRI subjects’ emotion 

attributions to the characters in the film. The authors could make this claim if behavioral ratings of the 

film characters’ emotions departed substantially from the first person emotion ratings already 

collected, and if similar neural results cannot be obtained based on the 3rd person emotion ratings. 

The authors could have also used stimuli that evoked emotions sans engaging narratives of other 

agents. As the study stands, unfortunately, the first and third person alternatives are completely 

confounded. Coupled with extensive prior evidence that the RTPJ is specifically recruited to 

differentiate first- from third-person experience, the authors have not made a strong case that the 

neural correlates reported reflect the psychological phenomena they claim.  

 

Second, he authors smooth the BOLD time series with a 6mm FWHM Gaussian kernel. Is it possible 

that the gradients are artifacts of smoothing activation peaks? The gradients of visual cortex that the 

authors liken their results to are mapped using voxels that exhibit a maximal response to a graded 

feature of the stimulus (e.g. voxels that respond maximally to stimulus features at a particular 

eccentricity or polar angle). The gradients used in this study estimate “the partial derivatives in each 

spatial dimension (x, y, z) and voxel, and can be interpreted as a vector field pointing in the physical 

direction of increasing β values.” It seems that smoothing a peak activation would necessarily produce 

a gradient towards the mode, and that if the peak is near the boundary of the meta-analytic ROI it 

would appear to be a gradient across the region. This seems consistent with the activation maps 

(except the ‘intensity’ component has multiple peaks near the RTPJ). I presume that the authors 

considered this and I am simply not understanding how they made the gradient analysis robust to it. 

Thus, the manuscript would benefit from further elaboration on how the gradient estimation used here 

compares with the estimation of cortical gradients in sensory cortices and how this study’s analysis 

protects against the case outlined above.  

 

More generally, the voxel size of fMRI means that the underlying signal is necessarily smoothed, and 

the dimensions detected are very likely smoother and lower dimensional than the underlying neural 

code.  

 

The authors report a peak variance explained in the RTPJ of ρ^2 = 0.07 and compare that to other 

research on emotion representation in the RTPJ (Skerry & Saxe 2015), which reported correlations of 

similar strength. However, Kendall’s τ is typically smaller than the Spearman’s ρ coefficient for the 

same data so the proportion of variance explained in this study might be still be substantially less than 

the comparison study (which also used 1.5x as many subjects). More generally, this number suggests 

that there is substantial variance within this region that is not yet explained by the authors' theory.  

 

The authors state that, “...the orthogonal arrangement of polarity and complexity in right TPJ and the 



fact that intensity was represented both superiorly and inferiorly to the superior temporal sulcus 

determined that all the possible combinations of emotional states elicited by the 'Forrest Gump' movie 

could be mapped within this region.” The authors should be much more careful about asserting that 

the emotions they measured represent the full space of emotions, especially considering that the 3 

components that the authors use do not even capture the disgust and surprise ratings in their data 

and other work they cite (Cowen & Keltner 2017) report high dimensional emotion representations.  

 

 

 

Reviewer #3:  

Remarks to the Author:  

Lettieri, Handjaras, et al. present an investigation of the topographic organization of emotion 

representation across the cortex. They draw upon a rich open fMRI data set to examine how emotional 

experiences are encoded in activity across the temporoparietal junction (TPJ). They find that three 

overlapping yet orthogonal gradients encode the polarity, intensity, and complexity of participants 

emotions. The research topic is of theoretical interest to a wide range of psychological and neural 

scientists. The methods are sophisticated, and the paper is well and clearly written. Thus I believe this 

work could make a substantial contribution to the literature. However, below I raise a number of 

points which I believe the manuscript would benefit from addressing:  

 

1) The authors derived three emotions dimensions by applying a PCA to ratings of six basic emotions 

across the movie Forrest Gump. Although this is a straightforward way to address this problem, it 

raises several concerns:  

a. The PCs produced by this procedure inevitably depend to some extent on the particular emotions 

the authors choose to have rated. Although there is a theoretical justification for the six states in 

question – as “basic emotions” – these states omit a wide range of important emotional states, such 

as social/secondary emotions like pride and envy. It would be helpful to know whether the same 

dimensions emerge when a broader set of states are rated.  

b. Related to (a), the PCs extracted from the movie ratings also depend on the qualities of the 

stimulus itself. Forrest Gump is well known for being both an emotionally evocative movie, and one 

with highly varied content, which makes it a prudent choice in the present context. However, I doubt 

that it or indeed any individual movie could come close to covering the full range of human emotion. 

Moreover, the temporal structure of emotion may differ considerably between movies in general, as 

opposed to real life. Presumably this is part of why we are often willing to pay money to watch a 

movie, but would probably not pay so much to watch a random slice of someone’s actual life. Perhaps 

the authors could compare temporal dynamics observed in their rating data to available experience-

sampling data sets to assess how well their stimulus reflects real life experience?  

c. By conducting the PCA on ratings of the movie itself, these dimensions are in some sense overfitted 

to this particular stimulus. For example, if factor structure/loadings were derived from ratings of 

separate movies (or even non-movie stimuli), and then applied to the present data, I imagine that 

they would explain less of the variance in both the basic emotion ratings and the fMRI data. The 

authors should note this caveat, perhaps in relation to their more general discussion of how much 

variance their model captures.  

d. In PCA, once the number of components has been specified, any rotation of the retained 

components will explain the same total variance. How can we know that the rotation the authors 

consider is the “canonical” rotation of these dimensions? A recent preprint 

(https://psyarxiv.com/6dvn3/) makes this point at length in a fairly similar context: topographic maps 

of facial expressions of emotion across the FFA. The authors might try testing rotations of their 

components to see whether they produce better or worse gradients across the TPJ. Indeed, the search 

for neural gradients might suggest an interesting way to establish which rotations are canonical, which 

would be a valuable methodological contribution in itself.  



2) The region the authors consider as the “TPJ” is very large – much larger than this region typically 

appears in the literature. It includes substantial portions of parietal and occipital cortex well outside of 

what would usually be called the TPJ (e.g., as defined using a false-belief localizer). I do not think this 

is necessarily problematic from an analytic point of view, but I do think it may give casual readers the 

wrong impression of the spatial extent of the observed patterns. I think the authors should 

acknowledge this discrepancy more explicitly, and make it clear from the beginning (i.e. in the title or 

the abstract) just how extensive these gradients appear. However, they can emphasize at the same 

time that this result generalizes across a range of spatial scales (as demonstrated in the results 

reported in supplementary table 2).  

 

3) The TPJ is also a region which is more typically implicated in understanding others’ thoughts and 

feelings (i.e., theory of mind) than in the actual experience of emotion. As the authors point out, one 

way in which movies elicit emotions in people is through empathy with the characters. However, these 

facts together suggest a possible confound: the emotions that participants rated may be highly 

associated with the emotions they perceiver the characters to experience. Such a confound would 

complicate the interpretation of the present results: do the TPJ emotion gradients encode one’s own 

emotional experience, or the perceived emotional experience of others? Either result would be 

interesting, but it is important to know which account is better supported. One straightforward way to 

address this would be to ask additional movie viewers to rate the characters’ emotions, rather than 

their own. This would allow the authors to measure the extent of this potential confound, and 

potentially statistically control for it.  

 

4) The authors tested Italian rater’s emotional experiences in German speaking participants’ brains, 

while each watched an American movie. The success of the encoding model across these linguistic and 

cultural boundaries is impressive and might be emphasized further. It might be interesting to discuss 

how other/larger cross-cultural differences might qualify the conclusions of this investigation. Ample 

evidence demonstrates that emotional experience and expression differ substantially across cultures – 

how might such differences potentially be reflected in the organization of cortex?  

 

5) The authors raise the low R2 of their model as a potential limitation. Given that they have data 

from multiple participants watching/rating the same movie, it seems as if they have the necessary 

data to compute the reliability of both emotion dimensions and neural activity. These reliabilities could 

then be used to perform a noise-ceiling/disattenuation analysis. Knowing how much reliable variance 

is out there to explain would help to contextualize whether the observed variance-explained is really 

low or high.  
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Reviewer #1 (Remarks to the Author): 

 

The manuscript by Lettieri and colleagues investigates the topographic representation 

of emotional states, describing three emotion dimensions (polarity, complexity, 

intensity) within the right temporo-parietal junction (TPJ). The study combines 

behavioral data with the openly available fMRI data from the studyforrest project to 

characterize the representation of emotion dimensions. The motivation and results are 

clearly presented, and additional supplementary analyses on the individual-level 

provide a valuable addition to the current study. However, I have the following 

methodological suggestions, which the authors may wish to consider: 

 

[1] The 'cortical mantle' is described as the space of the gradients described in the 

current study. However, the analyses appear to be conducted entirely in volumetric 

space. Have the authors considered running their analyses in surface-space to ensure 

that the affective dimensions map onto meaningful spatial representations of cortical 

space? The morphological characteristics of TPJ, which include the superior 

temporal sulcus, may introduce substantial artifacts into the analysis and results, 

especially due to smoothing over adjacent sulcal walls as well as the functional 

distinctions across sulci. (The results presented in Supplementary Figure 7 suggest 

that the sulcal position and orientation may in fact play a critical role in the main 

results.) Considering the examples provided by the authors of other topographic 

organizational patterns in the cortex treat the cortical surface as a two-dimensional 

sheet, I would urge the authors to consider the same approach for their analysis here. 

 

Response: We thank the Reviewer for the positive evaluation of our manuscript and 

we recognize the relevance of the two points raised. To address these concerns, we 

evaluated the significance of anatomo-functional gradients using unsmoothed fMRI 

data and estimates of anatomical distance based on cortical folding. These additional 

analyses prove that spatial smoothing does not affect the significance of right TPJ 

gradients (please see response to point 2 of Reviewer #2) and that the topography of 

emotion dimensions is preserved when considering cortical folding. 

In brief, we applied the Freesurfer recon-all analysis pipeline (Reuter et al., 2012) to 

the standard space template (Fonov et al., 2009) used as reference for the nonlinear 
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alignment of single-subject data. Afterwards, the reconstruction of the cortical ribbon 

(i.e., the space between pial surface and gray-to-white matter boundary) was 

transformed in AFNI-compatible format using the @SUMA_Make_Spec_FS script. 

We then opted for the Dijkstra algorithm to obtain estimates of anatomical distance 

based on cortical folding (Fischl et al., 1999; Van Essen et al., 2011). The figure 

below clearly shows that while the Euclidean distance does not respect right TPJ 

topology, the Dijkstra algorithm provides an adequate measure of cortical distance 

within this region. 

 

In addition, the single-subject unsmoothed timeseries were transformed into the 

standard space, averaged across individuals and projected onto the cortical surface 

(AFNI 3dVol2Surf, map function: average, 15 steps). Following the procedure 

adopted for volumetric data, we fitted the emotion dimension model in group-average 

cortical activity. Thus, for each of the six regressors of interest (i.e., the six PCs), we 

obtained unsmoothed β values projected onto the cortical mantle. 

The correspondence between unfiltered functional data and cortical distance was 

tested considering a patch of cortex comparable in size to the original volumetric 

definition of right TPJ. Also, the center of this ROI was located at the closest cortical 

point with respect to the Neurosynth reverse inference peak for the term "TPJ". 

Importantly, results support the original findings: using the cortical projection of 

unsmoothed functional data we found that polarity (Spearman's ρ = 0.248, p = 0.026; 

CI: 0.238-0.257), complexity (ρ = 0.314, p = 0.001; CI: 0.304-0.323) and intensity (ρ 
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= 0.249, p = 0.013; CI: 0.239-0.258) dimensions are mapped in right TPJ through 

orthogonal and spatially overlapping gradients. 

We believe that these new findings corroborate our original results and prove that 

right TPJ emotion dimension gradients are robust to smoothing artifacts and are 

mapped onto meaningful spatial representations of cortical space. We have now 

modified Figure 4 to include the results of surface space analyses and updated the 

Methods, Results and Supplementary Materials of the revised version of the 

manuscript. 

 

[2] A searchlight analysis is conducted to investigate whether the three combined 

dimensions are also represented within other portions of the cortex, however, have 

the same analyses been applied to investigate whether individual dimensions are 

represented elsewhere? While the mappings may differ, there would likely be 

repeated topographies throughout the cortex, even if TPJ is the only region to encode 

all three dimensions. Further investigation of the presence of these dimensions (in 

individual or combined forms) across the cortical surface would provide greater 

insight into the neural representation of emotional states. 

 

Response: We thank the Reviewer for this suggestion and we agree that it would be of 

interest to search for individual emotion dimension topographies in regions encoding 

the emotion rating model. 

To do this, we ran three separate searchlight analyses (see Supplementary Materials 

for details), measuring the topographic arrangement of polarity, complexity and 

intensity. The resulting log(p-value) maps were then combined into a comprehensive 

description of the distribution of gradients across the brain. Indeed, this procedure 

highlighted regions predominantly involved either in polarity, complexity or intensity, 

as well as in any combination of the three. 

Results confirm that the area of maximum overlap for emotion dimension gradients is 

located within the right TPJ/pSTS region. This is also in line with Nummenmaa et al., 

2012 paper, in which brain networks encoding valence and arousal dimensions 

overlapped in the bilateral pSTS/pSTG (please see green-colored regions in Figure 3 

of Nummenmaa et al., 2012). 

In addition, polarity, complexity and intensity maps revealed other interesting 

topographies: regions as the right preCS represented the three emotion dimensions in 
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distinct - yet adjoining - subregions, whereas the right OTS encoded overlapping 

gradients of complexity and intensity (Supplementary Figure 6). A representation of 

the distribution of emotion dimension gradients across brain regions encoding the 

emotion rating model is now reported in Supplementary Figure 6 and discussed in the 

Results section of the revised version of the manuscript. 

Further studies are needed to explore emotion topographies highlighted here: previous 

studies already pointed to the existence of distinct and partially overlapping networks 

encoding single emotion dimensions (Nummenmaa et al., 2012), yet a comprehensive 

description of the functional interactions among regions of these networks is still 

lacking (Raz et al., 2016).  
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Reviewer #2 (Remarks to the Author): 

 

Lettieri et al. collected emotion ratings from 12 subjects watching clips of Forrest 

Gump that had been overdubbed with Italian. Subjects were instructed to 

continuously report on their first-person subjective experience of six emotions 

(happiness, surprise, fear, sadness, anger and disgust) during the viewing. These 

ratings were decomposed into principal components, 3 of which were found to be 

individually reliable. Voxel activity in an independent set of 14 subjects watching the 

same video clips (this time overdubbed with German) was then modeled using these 

six orthogonal components. Activation gradients were computed based on the 

coefficients from the multiple regression. The authors report that activity in the RTPJ 

reflects continuous gradients of encoding strength of the three reliable principal 

components (which they call ‘polarity’, ‘complexity’ and ‘intensity’). These three 

gradients are off-axis relative to each other, potentially allowing the activation of a 

cortical location in the RTPJ to represent a vector in the feature space spanned by the 

principal components of behavioral ratings. These results are potentially interesting, 

and compatible with previous similar work. 

 

However, the authors claim that the RTPJ encodes people’s first-person subjective 

experience of emotion using this basis set. This claim goes far beyond what can be 

established from their data. 

 

[1] First, though the authors claim to be studying first person emotional experience, 

they did not control for third-person emotion attributions. The RTPJ plays a central 

role in the attribution of mental states to other agents. The authors used stimuli of 

emotionally engaging narratives about other people that are bound to evoke strong 

emotion attributions to the portrayed characters. If the emotions attributed to the 

characters positively correlate with the emotions experienced by the raters, it is 

entirely plausible that the signals modeled in the RTPJ reflect third party emotion 

attributions rather than the first person subjective experience of emotion, which is 

highly consistent with prior work on the RTPJ representation of others’ emotions. The 

manuscript’s introduction does not make a strong case that we should expect the 

RTPJ to encode first person subjective emotional experience based on prior work and 
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the study does not adequately demonstrate that first person representation is the 

correct interpretation of the results. 

To claim that these results specifically reflect dimensions of first-person emotional 

experience, the authors would need to demonstrate that the results are not due to the 

fMRI subjects’ emotion attributions to the characters in the film. The authors could 

make this claim if behavioral ratings of the film characters’ emotions departed 

substantially from the first person emotion ratings already collected, and if similar 

neural results cannot be obtained based on the 3rd person emotion ratings. The 

authors could have also used stimuli that evoked emotions sans engaging narratives 

of other agents. As the study stands, unfortunately, the first and third person 

alternatives are completely confounded. Coupled with extensive prior evidence that 

the RTPJ is specifically recruited to differentiate first- from third-person experience, 

the authors have not made a strong case that the neural correlates reported reflect 

the psychological phenomena they claim. 

 

Response: We thank the Reviewer for this constructive criticism, which we agree is 

relevant for the interpretation of our findings. We conducted additional analyses to 

support the evidence that right temporo-parietal emotion dimension gradients reflect 

the subjective experience of observers, rather than the attribution of emotional states 

to movie characters. 

In movie watching, actions and dialogues are not generally directed toward the 

observer. Thus, one's own emotional experience results, on the one hand, from 

narrative choices aimed at fostering empathic responses and emotional contagion 

(Smith, 1995) and, on the other hand, from perspective-taking and mentalizing 

processes (Lombardo et al., 2010; Raz et al., 2013). The fact that character intentions 

and beliefs shape the subjective experience in a bystander may also explain the high 

between-subjects agreement in reports of experienced emotions (Philippot, 1993; 

Gross & Levenson, 1995), present also in our data. However, we believe that the 

subjective reports we recorded do not merely represent a process of emotion 

attribution. 

To prove that this claim is supported by data, we tested whether the gradient-like 

organization of right TPJ specifically reflects the subjective experience of raters, 

rather than portrayed emotions. To this aim, we took advantage of publicly available 

emotion tagging data of the Forrest Gump movie, provided by an independent group 
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(Labs et al., 2015). Differently from our behavioral task, raters were asked to indicate 

the portrayed emotion of each character (e.g., Forrest Gump, Jenny) in 205 movie 

segments presented in random order and labeled over the course of approximately 

three weeks. As also indicated by the authors (Labs et al., 2015), this particular 

procedure minimized carry-over effects and helped observers to exclusively focus on 

indicators of portrayed emotions. In addition, the possibility to tag emotions 

independently in each movie segment and to watch each scene more than once, 

allowed subjects to choose among a larger number of emotion categories (N = 22; 

Ortony et al., 1990), as compared to our set of emotions. Moreover, each observer 

was instructed to report with a binary label whether the portrayed emotion was 

directed toward the character itself ("self-directed"; e.g., Forrest feeling sad) or 

toward another character ("other-directed"; e.g., Forrest feeling happy for Jenny). 

These labels were aggregated at group-level and resulted in a regressor of interest 

that, for each timepoint, offered a measure of the agreement across raters about the 

"direction" of portrayed emotions. 

This additional characterization provided us with two emotion attribution models: the 

self-directed model, based on the inferring of another person's emotions (i.e., first-

order affective Theory of Mind; Shamay-Tsoory & Aharon-Peretz, 2007) and the 

other-directed model, which considers embedded affective states (i.e., second-order 

affective Theory of Mind; Shamay-Tsoory & Aharon-Peretz, 2007). These two 

descriptions served as third-person emotion attribution models and underwent the 

exact same processing steps (i.e., 2s lagging and temporal smoothing), which have 

been applied to our subjective emotion rating model. 

To address the Reviewer's concerns regarding the validity of our interpretation of the 

results, (1) we first tested the collinearity between our subjective emotion rating 

model and the two third-person emotion attribution models; (2) we then measured 

which of these significantly explained activity of right TPJ and, most importantly, (3) 

which of these models are topographically represented in this region. 

As the two third-person emotion attribution models included the four basic emotions 

found to be consistent across observers in our experiment (i.e., happiness, fear, 

sadness and anger), we were able to directly assess the correlation for these ratings. 

We found that scores of our subjective emotion rating model positively correlated 

with those derived from the other-directed emotion attribution model. Specifically, 

Spearman's correlation was ρ = 0.442 for happiness, ρ = 0.521 for fear, ρ = 0.488 for 
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sadness and ρ = 0.442 for anger. The fact that ratings of these two models were 

positively correlated is not surprising: as already mentioned, the subjective experience 

of our raters likely depends on portrayed emotions as well. However, the average 

shared variance between our subjective emotion rating model and the other-directed 

emotion attribution model was 35.3% (happiness: 24.2%; fear: 56.2%; sadness: 

39.5%; anger: 21.2%), indicating that the subjective emotional experience can be 

inferred from portrayed emotions only in part. 

When we assessed the relationship between ratings of the four basic emotions 

obtained from our experiment and those of the self-directed emotion attribution 

model, we still observed smaller, yet positive, correlations. As a matter of fact, 

Spearman's correlation was ρ = 0.284 for happiness, ρ = 0.309 for fear, ρ = 0.365 for 

sadness and ρ = 0.137 for anger. Here, the shared variance between the two models is 

even lower: average is 11.4%, happiness 5.0%, fear 16.0%, sadness 21.1% and anger 

3.3%. Even considering the other-directed emotion attribution model (i.e., the one 

showing the higher correlation with our model), there is a ~65% of variance in ratings 

which is not shared between tagging of third-person emotion attribution and reports of 

subjectively experienced affective states. These results made it possible to test the 

goodness of fit of these alternative descriptions with brain activity and, ultimately, to 

assess whether portrayed emotions are topographically encoded in right TPJ. 

Using studyforrest.org fMRI data and the "direction" regressor of interest, Hanke and 

colleagues (2016) already demonstrated that right TPJ activity represents whether 

emotions are self- or other-directed. Of note, using a different pipeline (i.e., voxel-

wise encoding of direction on group-average BOLD signal), we obtained similar 

results: the higher the BOLD of right TPJ, the more raters labeled emotions as other-

directed (right TPJ peak R2: 0.04; right TPJ average R2: 0.02). Significant 

associations (p < 0.01 FDR corrected) between emotion direction and BOLD signal 

were also found in other brain regions of the ToM, empathy and emotion processing 

networks (for a complete description please refer to Supplementary Figure 16). 

Further, we measured the extent to which the two third-person emotion attribution 

models explained brain activity in right TPJ. As these two descriptions are higher in 

dimensionality as compared to our model, we decided to assess the significance of 

fitting using three different procedures: (A) matching the dimensionality across 

models by selecting the first six principal components only; (B) matching the emotion 

categories in ratings, by performing PCA on the four basic emotions shared across 
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models (i.e., happiness, fear, sadness and anger); (C) using the full model regardless 

of the dimensionality (i.e., six components for our subjective emotion rating model 

and 22 for each of the two emotion attribution models). In addition, to allow a direct 

and unbiased comparison between R2 values across different models in right TPJ, we 

performed cross-validation using a half-run split method (for further details please 

refer to the caption of Supplementary Figure 8). 

Therefore, (A) following the procedure adopted for our subjective ratings, for each of 

the emotion attribution models we performed PCA and selected the first six 

components, matching the dimensionality of our description. These two six-column 

partitions, of the original 22-dimensional spaces, represented the vast majority of the 

explained variance both in the other-directed (87.0%) and in the self-directed (88.6%) 

emotion attribution model. The two six-column partitions were then fitted into brain 

activity of right TPJ (15mm radius sphere centered at the Neurosynth reverse 

inference peak) and the distributions of R2 coefficients were tested for significance 

against R2 null distributions generated from surrogate models (please refer to 

Encoding Analysis in the Methods section). Results showed that our subjective 

emotion rating model and the six-column partition of the other-directed emotion 

attribution model significantly explained activity of right TPJ (p < 0.05; 

Supplementary Figure 8). Conversely, the R2 fitting of the self-directed model was not 

significantly different from the null distribution (p = 0.269). 

The same holds using (B) ratings of the four basic emotions shared across models. 

Indeed, our subjective model and the other-directed model significantly explained 

right TPJ activity (p < 0.05), whereas the self-directed model did not (p = 0.335). 

Comparable results were also obtained (C) when testing the full models (i.e., 22 

columns; other-directed emotion attribution model p < 0.05; self-directed emotion 

attribution model p = 0.078). Of note, our subjective emotion rating model and the 

other-directed emotion attribution model did not significantly differ in explaining 

activity of right TPJ (p > 0.05 for the three above-mentioned procedures). 

Most importantly, to prove that the topographic arrangement of emotion dimensions is 

specific for subjective descriptions of the emotional experience, we tested the 

existence of right TPJ gradients using portrayed emotions. As the other-directed was 

the only emotion attribution model significantly explaining activity of our region of 

interest, we focused our analysis on this description. Specifically, we evaluated two 

different scenarios: (A) the existence of right TPJ gradients encoding the 22 
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components of the other-directed emotion attribution model; (B) the possibility to 

identify emotion gradients following the multidimensional alignment (i.e., canonical 

correlation analysis - CCA; Bilenko & Gallant, 2016) of the 22-dimensional emotion 

attribution space to the 6-dimensional space defined by subjective ratings. These 

alternative procedures relate to two different questions: (A) whether the process of 

emotion attribution is associated to emotion gradients in right TPJ and (B) whether 

starting from a third-person complex description of portrayed emotions, one can fully 

reconstruct the subjective report of our raters, as well as its brain topography. 

Crucially, results proved that (A) none of the first six components obtained from the 

other-directed emotion attribution model (i.e., 87% of the explained variance) 

retained a topographical organization in right TPJ. Only the 18th PC, explaining the 

0.3% of the variance, appeared to be encoded in a gradient-like manner (ρ = 0.290, p 

= 0.004). In addition, (B) using CCA we transformed the 22-dimensional space 

defined by the other-directed model to match our subjective reports and found that the 

correlation values between the aligned components and our six original PCs were ρ = 

0.615, ρ = 0.535, ρ = 0.490, ρ = 0.504, ρ = 0.265 and ρ = 0.236, respectively. 

Noteworthy, when fitting the aligned components into right TPJ activity, only the first 

PC (i.e., reconstructed polarity) was represented through a gradient (ρ = 0.221, p = 

0.036). Gradients for reconstructed complexity and intensity did not reach statistical 

significance (ρ = 0.150, p = 0.384 and ρ = 0.207, p = 0.092, respectively). Results for 

these two procedures are detailed in Supplementary Table 5. 

Taken together, these pieces of evidence provide two relevant points for the 

interpretation of our findings. First, other than the subjective emotion rating model, 

also the other-directed emotion attribution model explains right temporo-parietal 

activity. This is in line with previous studies pointing toward the fundamental role of 

this region in the attribution of mental and affective states to others (Saxe & 

Kanwisher, 2003; Van Overwalle, 2009; Schurz et al., 2014; Skerry & Saxe, 2015). 

At the same time, as highlighted by a comprehensive meta-analyses (Kober et al., 

2008), right pSTS/TPJ is consistently activated when experiencing and perceiving 

emotions (see also Burnett & Blakemore, 2009; Nummenmaa et al., 2012). Indeed, 

activity of this region has been linked to the comprehension (Mano et al., 2009) and 

understanding of prosody (Hervé et al., 2012, 2013) of emotional narratives, to 

emotional contagion (Lee et al., 2007; Nummenmaa et al., 2008) and empathy 

(Morelli et al., 2012; Morelli & Lieberman, 2013), and to the processing of 
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emotionally-charged facial expressions (Srinivasan et al., 2016; Spunt & Adolphs, 

2017). 

In our data, the first three emotion dimensions obtained from the subjective emotion 

rating model (~85% of the variance) demonstrated a significant topographic 

organization, whereas components explaining the vast majority (~87% of the 

variance) of the other-directed emotion attribution model were not encoded through 

gradients. Only a low-variance component of the third-person other-directed model 

appeared to be arranged in a topographic fashion (18th PC in Supplementary Table 5). 

Of note, the right TPJ pattern associated to this component was also collinear with 

activity evoked by polarity (ρ = 0.494) and intensity (ρ = 0.475) dimensions. 

Second, the information coded in the other-directed emotion attribution model is not 

sufficient to fully reconstruct the subjective emotional experience, as demonstrated by 

the multidimensional alignment procedure. Indeed, by fitting the aligned components, 

the gradient-based organization of right TPJ was revealed for reconstructed polarity 

and not for reconstructed complexity and intensity. 

In summary, the fact that right TPJ activity, but not its topography, is explained by 

emotion attribution processes sheds new light on the role of this region in the 

representation of affective states. We reason that emotion attribution to movie 

characters modulates right TPJ activity, as this process requires mentalization. At the 

same time, portrayed emotions influence the affective state of the observer through 

empathy and emotional contagion, and the final subjective experience is mapped in 

the same region following the three cardinal axes represented by emotion dimensions. 

This view would reconcile previous studies demonstrating the involvement of this 

region in the representation of subjective emotional experience (Burnett & 

Blakemore, 2009; Nummenmaa et al., 2012), empathic processes (Morelli et al., 

2012; Morelli & Lieberman, 2013) and the attribution of beliefs and emotions to 

others (Saxe & Kanwisher, 2003; Van Overwalle, 2009; Schurz et al., 2014). 

We have now added all these relevant aspects in the revised version of the Methods, 

Results and Discussion sections. 

 

[2] Second, the authors smooth the BOLD time series with a 6mm FWHM Gaussian 

kernel. Is it possible that the gradients are artifacts of smoothing activation peaks? 

The gradients of visual cortex that the authors liken their results to are mapped using 

voxels that exhibit a maximal response to a graded feature of the stimulus (e.g. voxels 
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that respond maximally to stimulus features at a particular eccentricity or polar 

angle). The gradients used in this study estimate “the partial derivatives in each 

spatial dimension (x, y, z) and voxel, and can be interpreted as a vector field pointing 

in the physical direction of increasing β values.” It seems that smoothing a peak 

activation would necessarily produce a gradient towards the mode, and that if the 

peak is near the boundary of the meta-analytic ROI it would appear to be a gradient 

across the region. This seems consistent with the activation maps (except the 

‘intensity’ component has multiple peaks near the RTPJ). I presume that the authors 

considered this and I am simply not understanding how they made the gradient 

analysis robust to it. Thus, the manuscript would benefit from further elaboration on 

how the gradient estimation used here compares with the estimation of cortical 

gradients in sensory cortices and how this study’s analysis protects against the case 

outlined above. 

 

Response: We agree with the Reviewer that smoothing activation maps would 

essentially produce gradients. However, as in our study we employed a voxelwise 

encoding analysis and continuous stimulation, β values represent the association 

between stimulus features and brain activity. Relevant papers employed a similar 

approach to describe the existence of topographies outside primary sensory regions 

(Haxby et al., 2011; Huth et al., 2012, 2016; Connolly et al., 2016; Long et al., 2018). 

In addition, as reported in Figure 4 of the original submission (now Figure 5 in the 

revised version of the manuscript), the peak location of BOLD signal for polarity and 

complexity dimensions depends on the reported affective state. Indeed, during positive 

events, brain activity is higher in inferior territories of right TPJ, whereas during 

negative events, greater BOLD activity is observed in superior territories. Therefore, 

also polarity and complexity maps demonstrate multiple peaks within this region. 

Despite this, we agree with the Reviewer that is not clear how we made our analyses 

robust to smoothing artifacts in the original submission and we are now providing 

more details in the revised version of Methods section and in the Supplementary 

Materials. 

First, to estimate the significance of right TPJ gradients, we used surrogate models 

built on the emotion dimensions (i.e., predictors), leaving untouched the spatial and 

temporal structure of the fMRI data. This procedure ensures that the spatial 

smoothness of this region is identical when the association between anatomical and 
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functional distance is tested either using the actual predictors or the null models. 

Thus, the strength of a gradient (i.e., effect size) depends on the smoothness of fMRI 

data, as it is computed from β values, whereas the significance of its estimation is not 

affected by this filtering procedure. 

Second, considering a defined patch of cortex, very high levels of smoothing will 

cancel the fine-grained spatial organization of anatomo-functional gradients, similarly 

to what has been shown in multi-voxel pattern analysis (Gardumi et al., 2016). For 

this reason, we limited the smoothness of fMRI data to 6mm FWHM. In this regard, 

we did not simply apply a 6mm smoothing filter to the original data, rather we 

adopted the newer AFNI's 3dBlurToFWHM tool, which estimates and iteratively 

increases the smoothness of data until a specific FWHM level is reached. We have 

added this relevant detail in the fMRI data pre-processing section of the 

Supplementary Materials. 

Third, to confirm that the results we obtained are not due to smoothing artifacts, we 

estimated the significance of gradients using the original unsmoothed fMRI data. 

Crucially, also using unfiltered data we have been able to reveal the topographical 

arrangement of polarity (ρ = 0.167, p = 0.033), complexity (ρ = 0.186, p = 0.010) and 

intensity (ρ = 0.184, p = 0.010) dimensions in right TPJ. Also, to ensure the 

qualitative comparison between smoothed and unfiltered data, we mapped the 

principal direction of emotion dimension gradients using spatially unsmoothed fMRI 

timeseries (see Supplementary Figure 7). 

Overall, we believe that these three pieces of evidence strongly support that right TPJ 

emotion dimension gradients do not depend on the application of spatial filtering to 

fMRI data. We discussed this point in the Results section of revised manuscript. 

In addition, we would like to thank the Reviewer for the comment about the parallel 

between emotion and sensory gradients. This comment motivated us to further 

explore the tuning of voxel response with respect to the three emotion dimensions. 

Indeed, as in sensory cortices topographies result from the maximal response of 

neurons to a graded stimulus feature, we investigated whether distinct populations of 

voxels are selective for affective states having specific polarity, complexity and 

intensity scores. To this aim, we employed the population receptive field method 

(pRF; Dumoulin & Wandell, 2008) and estimated the tuning curve of right TPJ voxels 

for each emotion dimension. First, we modeled ~5k Gaussian distributions using a 

wide range of plausible values of μ (5th-95th percentile of the scores of each emotion 
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dimension - 0.5 step) and σ (ranging from 1 to 12 - 0.25 step), sampled on a regular 

grid. Each emotion dimension timeseries was then filtered using these ~5k Gaussian 

distributions and fitted in brain activity using a linear regression approach. This 

produced, for each voxel, t-values (i.e., β/SE β) expressing the goodness of fit of each 

μ and σ combination. Maps of the principal tuning of each voxel were then obtained 

by selecting the combination characterized by the highest t-value across the ~5k 

samples (Figure 6). 

To estimate the similarity between tunings (i.e., μ parameters) obtained from the pRF 

approach and our original results (i.e., β coefficients of the gradient estimation), we 

computed Spearman’s ρ across right TPJ voxels. The significance of such an 

association was tested against a null distribution of β coefficients obtained through the 

IAAFT procedure (N = 1,000).  

Results revealed that the tuning obtained from the pRF method significantly 

approximated the right TPJ topography for each of the three emotion dimensions 

(polarity: ρ = 0.547, p = 0.001; complexity: ρ = 0.560, p < 0.001 and intensity: 

ρ=0.596, p < 0.001). 

Lastly, we further characterized the prototypical responses of populations of voxels as 

function of emotion dimension scores. To do so, we used the non-negative matrix 

factorization (NNMF; Lee et al., 1999) and decomposed the multivariate pRF data 

(i.e., voxels t-values for each μ and σ) into an approximated matrix of lower rank (i.e., 

10, retaining at least 90% of the total variance). This method allows parts-based 

representations (Lee et al., 1999), as the tuning voxels is computed as a linear 

summation of non-negative basis responses (Supplementary Figure 9). 

Results demonstrated the existence of four populations of voxels tuned to specific 

polarity values, which encoded highly and mildly positive and negative events, 

respectively (Figure 6A). Also, two distinct populations of voxels were tuned to 

maximally respond during cognitively mediated affective states (i.e., highly and 

mildly positive complexity values), and two other populations were selective for 

emotions characterized by higher and lower levels of automatic responses (i.e., highly 

and mildly negative complexity values; Figure 6B). Lastly, for the intensity dimension 

two specific populations of voxels were engaged depending on the strength of the 

emotional experience (Figure 6C). Therefore, as in the retinotopic mapping each 

hemifield can be further decomposed into quadrants or wedges mapping few visual 
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degrees, within the emotional hemifield of polarity and complexity, populations of 

voxels are tuned to lower and higher intensity values of the emotional experience. 

These additional findings better characterize how the topography of emotion 

dimensions relates to gradients represented in sensory areas and provide information 

in favor of the parallel between emotion and sensory gradients. We have added this 

aspect in the Results and Discussion sections of the revised manuscript. 

 

[3] More generally, the voxel size of fMRI means that the underlying signal is 

necessarily smoothed, and the dimensions detected are very likely smoother and 

lower dimensional than the underlying neural code. 

 

Response: Even though the spatial resolution of fMRI data is limited, this in-vivo 

noninvasive technique provides us with the opportunity to visualize brain activity of 

cortical and subcortical regions with millimeter resolution. This precision and the 

possibility to measure the simultaneous activity of several voxels represent two 

crucial aspects for the study of the topographical organization of stimulus features in 

the brain. 

Nonetheless, we agree with the Reviewer that the spatial resolution and the 

biophysical principles of BOLD activity (i.e., the hemodynamic nature of this signal) 

complicate the conclusions that can be drawn about the underlying neural code. 

Please note that as we recognize the relevance of such conundrum, we deliberately 

avoided the use of "neural" in the first submission of our manuscript. 

On these grounds, we agree that right TPJ emotion dimension gradients are lower-

dimensional representations of the underlying neural activity, but we would also like 

to point out that such descriptions could actually be considered as a neural code. 

Indeed, lower-dimensional representations of neuronal responses are not necessarily 

incorrect. We can once again use the example of retinotopy and primary visual cortex 

to better clarify this aspect. Which is the underlying neural code in striate cortex? 

Animal studies demonstrate that within this region a fine-grain code determines 

whether visual information is collected from the left or right eye (i.e., columns of 

ocular dominance) and also that neuronal populations are tuned to specific stimulus 

orientation. Nevertheless, on top of this local organization, other lower-dimensional 

neural codes do exist, such as the retinotopic mapping of azimuth and elevation. 

These smoother lower-dimensional gradients depend on the underlying neuronal 
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activity, even though they overlap with the columnar organization of ocular 

dominance and orientation tuning. The ability to capture either local or global 

representations of neural activity relates to the spatial resolution of imaging 

techniques. Indeed, while standard resolution fMRI has been successfully adopted to 

map stimulus location as function of eccentricity and polar angle (Sereno et al., 1995), 

specific ultra-high resolution sequences are needed to map ocular dominance (Cheng 

et al., 2001; Yacoub et al., 2007). Further, whether fMRI resolution is sufficient to 

map the selectivity to stimulus orientation is still unclear (Freeman et al., 2011; Roth 

et al., 2018). 

Therefore, one can conclude that multiple neural codes exist at different scales and 

that the spatial precision of the technique determines which of these are revealed. 

In the present study, our analyses proved the existence of emotion dimension 

gradients resembling the spatial characteristics and resolution of retinotopic maps in 

primary visual cortex. There is abundance of evidence suggesting that gradients 

represent an efficient brain mechanism of information coding, which minimizes the 

metabolic cost (Harvey et al., 2013; Huth et al., 2016; Margulies et al., 2016; 

Huntenburg et al., 2018). Hence, our findings support the existence of a lower 

dimensional, yet biologically favorable, neural code of emotion processing in 

temporo-parietal regions. 

Ultra high-resolution fMRI acquisitions may be adopted to prove the existence of 

other local neural codes within right TPJ. We believe that such a possibility is not in 

contrast with the emotion dimension gradients we found, especially considering the 

coexistence of multi-scale neural codes and the multifaceted nature of this region. 

We have added these aspects to the revised version of the Discussion section. 

 

[4] The authors report a peak variance explained in the RTPJ of ρ^2 = 0.07 and 

compare that to other research on emotion representation in the RTPJ (Skerry & Saxe 

2015), which reported correlations of similar strength. However, Kendall’s τ is 

typically smaller than the Spearman’s ρ coefficient for the same data so the 

proportion of variance explained in this study might be still be substantially less than 

the comparison study (which also used 1.5x as many subjects). More generally, this 

number suggests that there is substantial variance within this region that is not yet 

explained by the authors' theory. 
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Response: Please note that the effect size we reported is R2 = 0.07, being the output of 

a multiple linear regression analysis (i.e., voxelwise encoding). To compare our effect 

size with the one reported by Skerry & Saxe, 2015 using the same metric (i.e., 

Kendall's τ ~0.08), we correlated the predicted fMRI signal obtained from the 

encoding procedure, with the actual BOLD activity within the same voxel (i.e., at R2 

peak). The association between the two time-series was Spearman's ρ = 0.23 and 

Kendall's τ = 0.15. 

In addition, we acknowledge that while perceptual and motor representations 

(Khaligh-Razavi & Kriegeskorte, 2014; Ejaz et al., 2015) explain most of the variance 

in brain activity, the fitting of emotion models in associative cortical areas does not 

yield similar results. However, as also suggested by Reviewer #3, to better describe 

how much variance is actually explained by our emotion dimension model, we 

computed noise ceiling at right TPJ peak. We found that lower and upper noise 

ceiling bounds were R2 = 0.13 (Spearman's ρ = 0.33 and Kendall's τ = 0.22) and R2 = 

0.23 (Spearman's ρ = 0.45 and Kendall's τ = 0.31), respectively. These results suggest 

that, within this region, our emotion dimension model explains between 30% (i.e., 

upper bound) and 54% (i.e., lower bound) of the variance. 

Lastly, concerning the sample size, we are aware that Skerry & Saxe, 2015 study 

included a larger number of participants as compared to our research. However, 

considering the total amount of collected data (i.e., degrees of freedom) we are 

confident that the two experiments are comparable, as our final sample was composed 

by 3,595 timepoints acquired in 14 individuals and Skerry & Saxe, 2015 acquired 

2,285 timepoints in 22 subjects. These aspects are now detailed in Supplementary 

Materials and reported in the Discussion section. 

 

[5] The authors state that, “...the orthogonal arrangement of polarity and complexity 

in right TPJ and the fact that intensity was represented both superiorly and inferiorly 

to the superior temporal sulcus determined that all the possible combinations of 

emotional states elicited by the 'Forrest Gump' movie could be mapped within this 

region.” The authors should be much more careful about asserting that the emotions 

they measured represent the full space of emotions, especially considering that the 3 

components that the authors use do not even capture the disgust and surprise ratings 

in their data and other work they cite (Cowen & Keltner 2017) report high 

dimensional emotion representations. 
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Response: We thank the Reviewer for raising this point and we regret for not having 

better detailed this aspect in the original submission of our manuscript. First, we do 

agree with the Reviewer that it would not be possible to obtain a comprehensive 

representation of the space of human emotions considering states elicited by a 2h 

movie. In fact, when we stated that gradients could represent "[...] all the possible 

combinations of emotional states [...]", we specifically referred to those elicited by the 

Forrest Gump movie. In this regard, we would like to emphasize that even though 

ratings of surprise and disgust were not consistent across all the participants, we did 

not exclude such emotions from PCA. Therefore, the first three components do 

capture the disgust and surprise ratings, as can be appreciated from loadings of these 

two emotions on polarity and intensity (Figure 1C). 

Moreover, we would also like to point out that even though subjects were asked to 

report their inner experience using six emotion categories, their ratings were not 

limited to binary choices. Indeed, at each timepoint raters could simultaneously 

specify the perceived intensity of more than one emotion, leading to the definition of 

more complex affective states as compared to the basic ones. To further highlight this 

aspect, we performed dimensionality reduction and clustering analyses on emotion 

timeseries. In brief, starting from emotion ratings averaged across participants, we 

selected timepoints characterized by the highest intensity (i.e., above the 50th 

percentile) and applied t-distributed stochastic neighbor embedding as in Cowen & 

Keltner, 2017 (t-SNE; perplexity = 30; theta = 0.05). The results of this analysis are 

presented in Figure 2: here, each element represents a specific timepoint in the movie 

and the distance between elements depends on the statistical similarity of emotion 

ratings. Element color reflects the scores of the polarity and complexity dimensions: 

positive and negative events (i.e., polarity) are associated to the red and blue 

channels, respectively, whereas complexity scores modulate the green channel. To 

reveal the variety of affective states elicited by the movie, we then applied k-means 

clustering analysis to the projection of timepoints in the t-SNE manifold and 

determined the number of clusters using the silhouette criterion (Rousseeuw & 

Kaufman, 1990). Such procedure highlighted 15 distinct clusters, each defined by 

timepoints expressing either a single or a mixture of basic emotions (see pie-charts in 

Figure 2). For instance, cluster m represents timepoints mainly characterized by 

happiness, whereas cluster k identifies movie scenes in which the reported intensity of 
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fear and sadness is similar. Other clusters, such as e and j, depict timepoints connoted 

by high ambivalence (thus, high complexity), as happiness and sadness are similarly 

represented. 

Therefore, in our experiment the final number of elicited emotional states is greater 

than the six emotion categories among which subjects could choose. Interestingly, the 

variety of affective states elicited by the Forrest Gump movie is closer to the number 

of emotion categories identified by previous studies (e.g., 22 in Skerry and Saxe, 

2015; 27 in Cowen and Keltner, 2017), whose aim was to capture a wide range of 

emotional states (e.g., sexual desire, craving, terror). Of note, this evidence is 

supported also by single-subject reports, in which 38% (SE: ±2.3%) of timepoints 

were associated to a single emotion, 29% (SE: ±3.5%) were connoted by two 

emotions and 6% (SE: ±1.4%) by the concurrent experience of three distinct 

emotions. 

All these aspects are now detailed in the revised version of the Methods, Results and 

Discussion sections and the sentences indicated by the Reviewer have been rephrased 

accordingly.  
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Reviewer #3 (Remarks to the Author): 

 

Lettieri, Handjaras, et al. present an investigation of the topographic organization of 

emotion representation across the cortex. They draw upon a rich open fMRI data set 

to examine how emotional experiences are encoded in activity across the 

temporoparietal junction (TPJ). They find that three overlapping yet orthogonal 

gradients encode the polarity, intensity, and complexity of participants emotions. The 

research topic is of theoretical interest to a wide range of psychological and neural 

scientists. The methods are sophisticated, and the paper is well and clearly written. 

Thus I believe this work could make a substantial contribution to the literature. 

However, below I raise a number of points which I believe the manuscript would 

benefit from addressing: 

 

Response: We thank the Reviewer for the appreciation of our work.  

 

1) The authors derived three emotions dimensions by applying a PCA to ratings of six 

basic emotions across the movie Forrest Gump. Although this is a straightforward 

way to address this problem, it raises several concerns: 

a. The PCs produced by this procedure inevitably depend to some extent on the 

particular emotions the authors choose to have rated. Although there is a theoretical 

justification for the six states in question – as “basic emotions” – these states omit a 

wide range of important emotional states, such as social/secondary emotions like 

pride and envy. It would be helpful to know whether the same dimensions emerge 

when a broader set of states are rated. 

 

Response: To address the Reviewer’s concern, we employed Labs and colleagues 

(2015) ratings describing portrayed emotions of Forrest Gump considering embedded 

affective states (i.e., other-directed emotions; for details please see response to point 3 

below, and to point 1 of Reviewer #2). In their behavioral experiment, the authors 

provided subjects with a wide range of emotion categories among which they could 

draw to describe emotions of movie characters. In addition to four basic emotions 

(i.e., happiness, fear, sadness and anger), these 22 emotion categories included 

secondary and social states (Ortony et al., 1990) as admiration, contempt, gratitude, 
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hate, love, and pride among others (for a complete description please refer to Labs et 

al., 2015). 

To test whether the polarity, complexity and intensity dimensions could be retrieved 

using a larger number of emotion categories, we applied PCA to Labs data after 

lagging and temporally smoothing the 22 emotion timeseries, as we did for our 

ratings. The first six dimensions - 85% of explained variance - were selected to match 

the dimensionality of our emotion rating model and were transformed by rotating PC 

scores using the procrustes criterion. Results of this procedure are presented in 

Supplementary Figure 11 of the revised manuscript, in which factor loadings of 

polarity, complexity and intensity dimensions (panel A) can be compared with those 

obtained from Labs and colleagues data in the original unrotated (panel B) and rotated 

(panel C) version of PCs. The first three rotated components represented respectively 

the 20.6%, 19.8% and 16.6% of the explained variance, and were positively 

associated with the three emotion dimensions obtained from our data. Correlation for 

rotated PC1 versus polarity was Spearman's ρ = 0.589, for rotated PC2 versus 

complexity was Spearman's ρ = 0.533 and for rotated PC3 versus intensity was 

Spearman's ρ = 0.488. 

In addition, it is important to note that other than basic emotions (i.e., happiness, fear, 

sadness and anger), only four secondary/social affective states - i.e., love, contempt, 

admiration and gloating - substantially contributed to the first six components derived 

from Labs and colleagues data, even considering the unrotated version (panel B). This 

is in line with Labs et al., (2015), as the authors highlighted that the majority of 

emotional episodes involved the five categories of anger, fear, happiness, love and 

sadness, whereas other secondary/social categories available to subjects (e.g., 

resentment, gratification, satisfaction), were used infrequently or employed only by a 

subset of observers. 

Lastly, in our experiment the final number of emotional states elicited by the Forrest 

Gump movie was greater (N = 15) than the six emotion categories among which 

subjects could choose (for details please see response to point 5 of Reviewer #2). A 

number of these affective states represented a complex mixture of basic emotions (see 

Figure 2 in the revised version of the manuscript) and likely expressed secondary 

affective states, as in the case of ambivalence (i.e., cluster j of Figure 2, where 

happiness and sadness were equally reported) or resentment (i.e., cluster i of Figure 2, 

where sadness, anger and disgust were present at the same time). Nonetheless, as the 
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description of clusters would be speculative, we deliberately chose to not label them 

using a single term. 

In summary, the same polarity, complexity and intensity dimensions emerged even 

when a broader set of emotion categories was used. However, we also cannot exclude 

that other dimensions encoding emotions not primarily elicited by Forrest Gump (e.g., 

sexual desire, envy, terror), may be topographically represented in the brain. We are 

now discussing this evidence in the Discussion section of the revised version of the 

manuscript and in Supplementary Text. 

 

b. Related to (a), the PCs extracted from the movie ratings also depend on the 

qualities of the stimulus itself. Forrest Gump is well known for being both an 

emotionally evocative movie, and one with highly varied content, which makes it a 

prudent choice in the present context. However, I doubt that it or indeed any 

individual movie could come close to covering the full range of human emotion. 

Moreover, the temporal structure of emotion may differ considerably between movies 

in general, as opposed to real life. Presumably this is part of why we are often willing 

to pay money to watch a movie, but would probably not pay so much to watch a 

random slice of someone’s actual life. Perhaps the authors could compare temporal 

dynamics observed in their rating data to available experience-sampling data sets to 

assess how well their stimulus reflects real life experience? 

 

Response: We agree with the Reviewer that Forrest Gump is an emotionally evocative 

movie that elicits a variety of affective states in a relatively short amount of time. 

Although movies have been successfully used to study emotions in the laboratory 

setting (Gross & Levenson, 1995; Philippot, 1993; Schaefer et al., 2010), we also 

recognize that they cannot be representative of all possible affective states, as those 

experienced in real-life. In this regard, we consider the criticism raised by the 

Reviewer an interesting point that provides us the opportunity to test the validity of 

our stimulus. Thus, we assessed whether the temporal dynamics of portrayed 

emotions in Forrest Gump reflect those reported in real-life experiences. 

Of note, only a few studies assessed the temporal dynamics of emotion transitions in 

real life and one of these, Thornton & Tamir, 2017 (hereinafter T&T) released the 

collected data. Thus, we took advantage of their experience-sampling dataset (i.e., 

Study 3) comprising ~65,000 ratings obtained from ~10,000 participants, who were 
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asked to report their own emotional state throughout the day, choosing among 18 

categories (i.e., alertness, amusement, awe, gratitude, hope, joy, love, pride, 

satisfaction, anger, anxiety, contempt, disgust, embarrassment, fear, guilt, offense and 

sadness). In T&T's study, the authors used the collected reports to build an 

experience-based description of emotion transitions (i.e., real life emotion 

transitions). Specifically, by considering each reported emotion and the one following 

in time, they tested whether the co-occurrence of emotions is predicted by a mental 

representation of emotion transitions (for further details please refer to the original 

publication). We particularly selected the model based on T&T's study 3, as nine out 

of 18 emotion categories included in this dataset (i.e., anger, sadness, fear, contempt, 

satisfaction, gratitude, hope, love and pride) were also adopted by Labs and 

colleagues (Labs et al., 2015) to label portrayed emotions in Forrest Gump. 

As reported above (i.e., response to point 1 of Reviewer #2), for the emotion tagging 

data, Labs and colleagues asked a group of participants to indicate the portrayed 

emotions of each character (e.g., Forrest Gump, Jenny) in 205 randomly presented 

movie segments. The possibility to tag emotions independently in each movie 

segment as well as to watch each scene more than once, allowed subjects to choose 

among a larger number of emotion categories (N = 22; Ortony et al., 1990), as 

compared to our set of emotions. 

Starting from these data, we thoroughly followed T&T methods and converted ratings 

into discrete outcomes (i.e., emotion present or not) for each timepoint. We then built 

a transition count matrix by measuring the number of transitions between all possible 

emotion pairings in adjacent timepoints (i.e., between t and t+1). This matrix was 

further normalized by frequency-based expectations (as in T&T's supplementary 

materials), obtaining the odds of each transition. The log-transformed version of this 

matrix (i.e., movie emotion transitions) was then compared to real-life data (i.e., real 

life emotion transitions, as reported in T&T's original paper) using Spearman's ρ. To 

assess the statistical significance of this association, we generated surrogate timeseries 

for the nine emotion categories through the IAAFT procedure (N = 1,000; see 

Methods for details). For each of the 1,000 null models, a transition count matrix was 

then obtained, normalized and log-transformed, similarly to what has been done for 

emotion transitions present in the movie. The obtained matrices were correlated with 
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T&T's real life data, generating a null distribution against which the actual association 

between movie-based and real life emotion transition models was tested. 

Results showed that emotion transitions obtained from movie and real life data were 

significantly associated (Spearman's ρ = 0.646; p = 0.001; Supplementary Figure 12).  

In addition, as this analysis explored the consistency between movie-based and real 

life emotion transitions in a short time window (2s), we also evaluated whether this 

relationship exists at different time scales. Therefore, we built a number of movie-

based models, each measuring the likelihood of emotion transitions between 

timepoint t and timepoint t+n in the future, with a maximum delay of 120 seconds (60 

timepoints). These models were then correlated with real life data and statistical 

significance was assessed using the procedure described above. Results are reported 

in panel D of Supplementary Figure 12 and show that the real life model predicts 

emotion transitions in the movie up to 58 seconds. 

Of note, happiness is one of the emotion categories most present in Forrest Gump 

tagging data, yet it has not been used in reports collected for study 3 of T&T's paper. 

Hence, we decided to include this emotion in the movie-based model, using joy, awe 

or amusement as its counterpart in the real life model. This allowed us to estimate the 

robustness of the association between movie and real life data considering different 

facets of the basic emotion happiness. 

Interestingly, using joy, awe or amusement as proxies of happiness, the association 

between the movie and the real life emotion transitions is significant (joy: Spearman's 

ρ = 0.702; p = 0.001; awe: Spearman's ρ = 0.702; p = 0.001; amusement: Spearman's 

ρ = 0.686; p = 0.001) and real life data predict emotion transitions in the movie up to 

64 seconds in the future. 

Altogether, these analyses show that within a ~60 seconds time window our stimulus 

reflects emotion transitions similar to those experienced in real life and predicted by a 

mental model of emotion co-occurrence. We believe that these new findings provide a 

relevant contribution to our manuscript by substantiating the ecological validity of our 

stimulus. 

 

c. By conducting the PCA on ratings of the movie itself, these dimensions are in some 

sense overfitted to this particular stimulus. For example, if factor structure/loadings 

were derived from ratings of separate movies (or even non-movie stimuli), and then 
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applied to the present data, I imagine that they would explain less of the variance in 

both the basic emotion ratings and the fMRI data. The authors should note this 

caveat, perhaps in relation to their more general discussion of how much variance 

their model captures. 

 

Response: We agree with the Reviewer that the collected emotion ratings are specific 

for the present movie. Thus, reconstructed factor loadings presumably explain less 

variance when applied to brain activity evoked by other stimuli. Also, because of 

specific narrative choices, it is likely that different affective states are more 

represented in other movies (e.g., terror, envy) and even training on two hours of 

fMRI acquisition, may not be sufficient to compensate the different distribution of 

emotion categories between the training and test set. 

However, we recognize that the robust estimation of the effect size of our emotion 

dimension model is an important point (also raised by Reviewer #2). In addition, the 

use of cross-validation provided us with the opportunity to measure how other, more 

complex, emotion models explain brain activity in an unbiased manner, as the 

estimation of cross-validated R2 coefficients is not affected by model dimensionality. 

Therefore, to assess the fitting of our model we applied a half-split procedure to each 

fMRI run and randomly selected one of the two halves as the training data for the 

estimation of β coefficients. We then measured the goodness of fit of our model by 

multiplying the predictors of the remaining half with estimated β coefficients, thus 

reconstructing the predicted fMRI signal. The latter was then correlated with the 

actual fMRI activity, obtaining the final cross-validated R2 coefficient. 

To avoid possible confounds introduced by selecting the first or the second part of 

each run as training/test dataset, we repeated the same procedure 200 times (i.e., 

bootstrapping), each one randomly assigning the first or second half to the 

training/test set. Results for the cross-validated R2 are reported in Supplementary 

Figure 8. 

In addition, following the Reviewer's suggestion we better discussed the ability of our 

model to explain brain activity, also considering the results obtained from the cross-

validation and the noise ceiling procedures (for details please refer to point 5 below). 

These aspects are detailed in the revised version of the Discussion section and in the 

Supplementary Text. 
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d. In PCA, once the number of components has been specified, any rotation of the 

retained components will explain the same total variance. How can we know that the 

rotation the authors consider is the “canonical” rotation of these dimensions? A 

recent preprint (https://psyarxiv.com/6dvn3/) makes this point at length in a fairly 

similar context: topographic maps of facial expressions of emotion across the FFA. 

The authors might try testing rotations of their components to see whether they 

produce better or worse gradients across the TPJ. Indeed, the search for neural 

gradients might suggest an interesting way to establish which rotations are canonical, 

which would be a valuable methodological contribution in itself. 

 

Response: We thank the Reviewer for raising this interesting point. Indeed, we agree 

that testing the correspondence between anatomo-functional gradients and PC 

rotations could reveal which stimulus features are actually encoded onto the cortical 

mantle (Huth et al., 2016). 

We carefully read the suggested preprint and conducted additional analyses to address 

this relevant point. In the original submission, we limited our analyses to the 

unrotated version of principal components as the assessment of all possible rotations 

increases exponentially with the number of components, becoming computationally 

intractable even with few dimensions (e.g., four dimensions and ±45° rotations 

produce ~68 million solutions). However, to test whether the unrotated version of PCs 

represents the canonical description of emotion dimensions, we developed a novel 

approach that isolates the best-approximated solution. 

First, we restricted our analysis to the three emotion dimensions consistent across 

subjects (i.e., polarity, complexity and intensity), which also showed a gradient-like 

organization in right TPJ. Second, we performed only orthogonal rotations because of 

two reasons: (1) as indicated by the Reviewer, any orthogonal rotation of the original 

components will explain the same total variance; (2) the computation of gradient 

directions requires the accurate estimate of β coefficients obtained from a multiple 

linear regression analysis. This approach is however not robust if predictors are 

collinear, which may be the case when oblique rotations are applied. 

Therefore, we first estimated all the possible elemental rotations along the axes 

defined by the three emotion dimensions (i.e., x: polarity, y: complexity and z: 

intensity). We explored rotations between ±45° with 1° step, as this range ensured 
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univocal solutions that would not produce the shifting of PC labels. As a matter of 

fact, considering a convenient bi-dimensional example, we can assert that 60° 

orthogonal rotations for PC1 and PC2 would produce solutions in which PC1 

approximates the unrotated version of PC2 and PC2 resembles the 180°-rotated (i.e., 

flipped) version of PC1. Such a solution, though, would be identical to a 30° rotation, 

except for the PC sign. In line with this, rotations of ±90° would simply shift PC 

labels (e.g., rotated complexity would become now unrotated intensity), whereas 

±180° rotations would result in sign flipping. The latter case would lead to brain 

activity estimates (i.e., β values) being the topographically mirrored version of those 

obtained using the unrotated dimensions and, thus, to ρ values of the same magnitude 

for the association between anatomical and functional distance. 

As all the possible rotations between ±45° produce ~750k solutions - which is already 

computationally intense -, we uniformly sampled 70k rotations from the original 

space. Further, the intuitive mapping of gradient magnitude (i.e., Spearman's ρ 

between anatomical and functional distance) in the manifold defined by the rotated 

solutions is non trivial and a specific figure has been dedicated to illustrate the 

method we propose (Supplementary Figure 4A).  

In brief, we represented gradient intensity of the unrotated emotion dimensions as the 

central point of a 3D manifold described by all the ±45° explored rotations. We also 

mapped gradient intensity of all the rotated solutions as points in this space, color-

coding the magnitude of the association between anatomical and functional distance. 

Rotations are expressed according to three cardinal trajectories originating from the 

central point (i.e., the unrotated emotion dimensions), each one determining the 

orthogonal rotation of two components while maintaining fixed the other one. 

Therefore, points lying on the red trajectory depict solutions in which the original 

unrotated version of polarity is present and complexity and intensity are actually 

rotated. The same applies also to the green and blue trajectories in which complexity 

and intensity respectively maintain their original unrotated form. All the other mapped 

solutions describe orthogonal rotations concurrently applied to the three emotion 

dimensions. The larger the geodesic distance in the solution space between axes origin 

and a specific point, the larger is the applied rotation to the original emotion 

dimensions. Lastly, the position of each solution with respect to the central point also 

defines the direction of the rotation (i.e., positive or negative). 
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Results for this procedure are depicted in Supplementary Figure 4B and show that the 

original unrotated version of the polarity, complexity and intensity dimensions is the 

optimal solution to explain the gradient-like organization of right TPJ. Indeed, within 

the space defined by PC rotations, no solutions retained ρ coefficients (i.e., gradient 

magnitude) larger than those associated with the unrotated components for all the 

three emotion dimensions. 

In addition, rotations in which the gradient magnitude is similar across the three 

emotion dimensions are arranged close to the unrotated solution (i.e., white areas in 

Supplementary Figure 4B), whereas moving away from axes origin at least one of the 

three dimensions is not represented as a gradient in right TPJ (i.e., yellow and cyan 

areas in Supplementary Figure 4B). Of note, considering all the explored solutions, 

very few rotations produce gradients encoding combined polarity and intensity, but 

not complexity (i.e., lack of magenta areas in Supplementary Figure 4B).  

As the original unrotated solution was the best among ~70k explored rotations, we 

assessed the probability of occurrence of such behavior using a Monte Carlo 

simulation. Therefore, we created 1,000 PC models by selecting 100 consecutive 

timepoints from the emotion dimension timeseries to predict randomly sampled right 

TPJ activity (N = 100 consecutive timepoints). For each iteration, we then mapped the 

results of the multiple linear regression analysis (i.e., β coefficients) on a 3-D grid of 

25 voxels and computed the correspondence between the anatomical and functional 

distance obtained using the unrotated and rotated (±45° with 5° step; ~7k explored 

solutions) predictors. Lastly, we counted the number of iterations in which the 

gradient magnitude of the rotated predictors was higher with respect to the original 

unrotated solution. 

Results of the Monte Carlo simulation confirm the peculiarity of real data. Indeed, 

while the unrotated version of emotion dimensions represents the optimal solution in 

explaining the right TPJ gradient-like organization, rotated components produce 

stronger gradients in the vast majority of simulated cases (96.2%; p < 0.05). Of note, 

we tested the reliability of the results obtained from the Monte Carlo simulation by 

also varying the length of the timeseries (50, 100 and 200 timepoints), the number of 

voxels (N = 25, 100) and by generating synthetic PC models and fMRI signal using 

Gaussian noise. Results for all these procedures were consistent with the original 

simulation (data not shown). 
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We agree with the Reviewer that our approach may be of interest to other researchers 

and we made available the code for computing, exploring and rendering PC rotations 

(please see the script gradient_explorer.m at https://osf.io/tzpdf). 

These aspects are briefly discussed in the Results section of the revised manuscript 

and thoroughly detailed in the Supplementary Materials. 

 

2) The region the authors consider as the “TPJ” is very large – much larger than this 

region typically appears in the literature. It includes substantial portions of parietal 

and occipital cortex well outside of what would usually be called the TPJ (e.g., as 

defined using a false-belief localizer). I do not think this is necessarily problematic 

from an analytic point of view, but I do think it may give casual readers the wrong 

impression of the spatial extent of the observed patterns. I think the authors should 

acknowledge this discrepancy more explicitly, and make it clear from the beginning 

(i.e. in the title or the abstract) just how extensive these gradients appear. However, 

they can emphasize at the same time that this result generalizes across a range of 

spatial scales (as demonstrated in the results reported in supplementary table 2). 

 

Response: We regret for not having better clarified the size of the region of interest 

encoding emotion dimension gradients. First, the patterns reported in the original 

version of Figure 2A,C and D (now Figure 3A,C and D) do not represent the optimal 

solution for the identification of emotion topography. In fact, while panel A shows 

regions significantly encoding the full emotion rating model, panels C and D depict 

the largest patch of cortex (i.e., maximum radius is 27mm, volume: 44,658mm3) 

employed to measure the association between cortical distance and brain activity. As 

correctly pointed out by the Reviewer, the existence of emotion dimension gradients 

generalizes across several definition of the ROI size, yet it is important to note that 

the optimal solution is represented by a 15mm radius sphere (11,556 mm3 volume). In 

fact, although emotion dimension gradients are significantly represented also 

considering a 27mm ROI (Supplementary Table 2), the effect size decreases for radii 

larger than 15mm. 

Also, we agree that the paper would benefit from a quantitative comparison of the size 

of our ROI with the definition of right TPJ based on the neuroimaging literature. 

To do so, we considered the right TPJ region obtained from the Neurosynth database 

(http://old.neurosynth.org/analyses/terms/tpj/). This meta-analytic definition is based 
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on brain activations elicited by classic Theory of Mind and affective processing tasks, 

such as false-belief (Aichhorn et al., 2009; Döhnel et al., 2012), emotion perception 

(Garrett & Maddock, 2006) or reappraisal tasks (Silvers et al., 2014). Therefore, this 

map would represent a reliable estimate of the right TPJ size, against which one could 

compare the volume of our spherical ROI. We have summarized this aspect in 

Supplementary Figure 15 of the revised submission. 

Considering the Neurosynth TPJ reverse inference map - p(F|A) -, the volume of the 

largest cluster was 8,127 mm3 (coordinates: x = +58, y = -50, z = +16), whereas the 

volume of the spherical ROI that better represents emotion topography in our study 

(i.e., 15mm radius) was 11,556 mm3. Yet, considering the TPJ forward inference map 

- p(A|F) -, the volume of the largest cluster was 16,929 mm3 (coordinates: x = +58, y 

= -50, z = +16). Altogether, these results indicate that the optimal description of 

emotion dimension gradients is represented in a patch of cortex that approximates the 

definition of right TPJ based on brain activation studies (i.e., ~42% larger in volume 

as compared to the reverse inference map, but also ~32% smaller than the forward 

inference definition). However, as we agree with the Reviewer that these gradients 

extend well beyond (i.e., 27mm radius sphere) the size of right TPJ reported in many 

studies, we are now using the term "temporo-parietal territories" in the Abstract 

section and throughout the revised manuscript.  

In addition, we are now detailing the similarities and discrepancies between our ROI 

and the canonical definition of R TPJ in the revised version of the Discussion section 

and Supplementary Text. 

 

3) The TPJ is also a region which is more typically implicated in understanding 

others’ thoughts and feelings (i.e., theory of mind) than in the actual experience of 

emotion. As the authors point out, one way in which movies elicit emotions in people 

is through empathy with the characters. However, these facts together suggest a 

possible confound: the emotions that participants rated may be highly associated with 

the emotions they perceiver the characters to experience. Such a confound would 

complicate the interpretation of the present results: do the TPJ emotion gradients 

encode one’s own emotional experience, or the perceived emotional experience of 

others? Either result would be interesting, but it is important to know which account 

is better supported. One straightforward way to address this would be to ask 

additional movie viewers to rate the characters’ emotions, rather than their own. This 
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would allow the authors to measure the extent of this potential confound, and 

potentially statistically control for it. 

 

Response: We thank the Reviewer for this comment, which has been also raised by 

Reviewer #2. Although we agree that the relevance of emotionotopy would not 

depend on whether perceived rather than portrayed emotions are mapped in temporo-

parietal territories, we followed the Reviewer's suggestion and tested which model 

better explained right TPJ gradients. To this aim, we used tagging data of Forrest 

Gump portrayed emotions provided by Labs and colleagues (2015). 

In brief, we found that while our subjective ratings positively correlated with emotion 

attribution data, a significant amount of variance was not shared between models (i.e., 

~65%). This allowed us to measure the association between emotion attribution data 

and brain activity, and to compare the goodness of this fitting with the one obtained 

from subjective ratings. The results of this analysis showed that only our model and 

the one representing embedded affective states of movie characters (i.e., other-

directed emotion attribution model) significantly explain right TPJ activity (p < 0.05). 

As also pointed out by the Reviewer, this is in line with the well-known role of this 

region in mentalizing and perspective-taking processes (Saxe & Kanwisher, 2003; 

Van Overwalle, 2009; Schurz et al., 2014). 

However, differently from our subjective emotion rating model, none of the first six 

components obtained from the emotion attribution model was topographically 

encoded in right TPJ. 

These pieces of evidence clearly indicate that while there is a correspondence 

between portrayed and perceived emotions, the subjective experience of our raters 

cannot be merely reduced to a process of emotion attribution. In addition, while both 

first- and third-person descriptions of emotions explain activity of our ROI, the 

topographic organization of right TPJ exclusively reflects the inner affective 

experience. 

Please note that all the details relative to these additional analyses are also specified in 

the response to point 1 of Reviewer #2 and throughout the revised version of the 

manuscript. 
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4) The authors tested Italian rater’s emotional experiences in German speaking 

participants’ brains, while each watched an American movie. The success of the 

encoding model across these linguistic and cultural boundaries is impressive and 

might be emphasized further. It might be interesting to discuss how other/larger 

cross-cultural differences might qualify the conclusions of this investigation. Ample 

evidence demonstrates that emotional experience and expression differ substantially 

across cultures – how might such differences potentially be reflected in the 

organization of cortex? 

 

Response: We thank the Reviewer for having highlighted the cross-cultural relevance 

of our encoding analysis. As a matter of fact, subjects participating in the behavioral 

and the fMRI experiment watched the Forrest Gump movie in their own native 

language (i.e., Italian and German dubbed version, respectively). As pointed out by 

the Reviewer, the successful encoding of emotion ratings in brain activity of 

independent subjects indicates that linguistic features, related to the translation of 

movie dialogues, did not considerably affect the unfolding of the emotional 

experience. This is not a trivial aspect, as even within the Western macro-culture 

specific terms identify affective states that are difficult to translate into other 

languages (e.g., schadenfreude in German, saudades in Portuguese or hygge in 

Danish). Furthermore, in movies as in the real life, language is not the only way 

through which one can express emotions, as gestures, facial expressions and bodily 

postures play a fundamental role as well. 

In line with our results, previous behavioral investigations showed the high 

consistency of emotional responses of European subjects to American, Italian, French 

and Belgian movies (Philippot, 1993; Schaefer et al., 2010). Likewise, a large sample 

study highlighted the relevance of culture over ethnicity in shaping the emotional 

response to movies (Gross & Levenson, 1995). These findings suggest that the 

emotional experience elicited by specific stimuli is similar across micro-cultures (e.g., 

Italian, French, German), though pertaining to the same macro-culture (e.g., Western). 

Indeed, our results further extend this evidence to the cortical representation of 

emotions, as we have been able to encode the affective experience of subjects across 

two distinct micro-cultures, the German and the Italian one. Despite this, it would be 

of major interest to test whether the topographic representation of emotions in 
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temporo-parietal territories is preserved when subjects come from different macro-

cultures (e.g., Eastern vs Western). 

Indeed, previous behavioral investigations reported differences between subjects with 

far-off cultural backgrounds in the display of emotional expressions (Marsh et al., 

2003; Immordino-Yang et al., 2016), recognition accuracy (Elfenbein & Ambady, 

2002) and emotion regulation (Butler et al., 2007; Matsumoto et al., 2008). Therefore, 

it is very likely that macro-cultures are actually able to influence social behaviors and 

affective processing. From an evolutionary perspective, this might strengthen the in-

group/out-group distinction and would provide individuals with a specific code to 

behave appropriately in social contexts. 

In addition, over the past years neuroimaging studies have investigated brain 

differences in the processing of social and emotional stimuli between macro-cultures. 

A meta-analysis by Han and Ma (2014) summarizes such findings by showing that 

regions involved in Theory of Mind, empathy and emotion recognition are 

differentially recruited in Westerners and Asians. Similarly, when in-/out-group 

stimuli (e.g., facial expressions) are employed, macro-cultural biases influence brain 

activations associated with emotion processing (Markham & Wang, 1996; Elfenbein 

& Ambady, 2002; Chiao et al., 2008; Adams et al., 2010). 

Overall, these studies point toward the fact that macro-cultural differences influence 

the brain processing of emotions and affective states. Our hypothesis in this regard is 

that topography is a biologically advantageous neural code for the representation of 

affective states onto the cortical mantle. Such a code, defined by the three axes of our 

gradients, would exist in the human brain regardless of macro-cultural differences. 

What would depend on the cultural background of each individual is instead the 

mapping of distinct emotional states within these gradients. For instance, ruminative 

thinking, sadness and apathy characterize melancholy in the Western culture and we 

speculate that such an emotion would be mapped in the brain as a negative state 

having high complexity. However, if different levels of polarity, complexity and 

intensity characterize melancholy in other macro-cultures, this emotion would be 

mapped differently with respect to the three right TPJ emotion dimension gradients. 

This would also imply that the cross-encoding we demonstrated for the Italian and 

German micro-cultures may not be generalized to distinct macro-cultures. The testing 

of these hypotheses is beyond the scope of this work. Yet, further studies addressing 
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such questions would add a relevant contribution to the existing literature on 

differences and similarities in the neural representation of emotions across cultures. 

As requested by the Reviewer, we added these considerations in the revised version of 

the Discussion section.  

 

5) The authors raise the low R2 of their model as a potential limitation. Given that 

they have data from multiple participants watching/rating the same movie, it seems as 

if they have the necessary data to compute the reliability of both emotion dimensions 

and neural activity. These reliabilities could then be used to perform a noise-

ceiling/disattenuation analysis. Knowing how much reliable variance is out there to 

explain would help to contextualize whether the observed variance-explained is really 

low or high. 

 

Response: Following the Reviewer’s suggestion, we conducted a noise-ceiling 

analysis for right TPJ data, similarly to what has been done by Ejaz and colleagues 

(Ejaz et al., 2015). For each voxel, we calculated the average association (i.e., R2 

value) between single-subject timeseries and group-level activity. This procedure 

considers group-level fMRI data as the ground-truth model. However, this averaged 

signal is biased as it includes single-subject information from all the enrolled 

participants, ultimately producing an overestimate of the actual noise-ceiling level 

(i.e., the upper bound). Therefore, to obtain an estimate of the lower-bound of noise-

ceiling we iteratively measured the association between each individual timeseries 

and the group-level average signal obtained from all the other participants (i.e., leave-

one-subject-out procedure). Considering the peak of association between the emotion 

dimension model and brain activity (CoG x = 61, y = -40, z = 19), lower and upper 

bounds were 0.13 and 0.23. These numbers suggest that, within right TPJ, our 

emotion dimension model (R2 = 0.07) explains between 30% (i.e., upper bound) and 

54% (i.e., lower bound) of the variance. Even though emotion dimensions explain at 

least one-third of the variance, other stimulus features are likely to be encoded within 

right TPJ. This is also in line with the large number of tasks activating this region 

(Young et al., 2010; Kim, 2011; Nardo et al., 2011; Bzdok et al., 2013; Krall et al., 

2015). The results for the noise-ceiling procedure are reported in the revised version 

of the Results and detailed in Supplementary Materials.
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Reviewers' Comments:  

 

Reviewer #1:  

Remarks to the Author:  

I would like to thank the authors for addressing my prior concerns.  

 

 

 

Reviewer #2:  

Remarks to the Author:  

I’ve read the revised manuscript, and the response to reviewers. I think this research is interesting 

and potentially important, but the interpretation has substantial limits.  

 

First, the authors claim that their results reflect the first-person subjective experience of the subjects, 

but I continue to doubt it. For a start, there have been literally hundreds, maybe thousands, of studies 

of the neuroscience of first person emotion, using a whole range of direct induction techniques (IAPs 

photos, music, memories, game experiences, etc etc etc). From that literature, it would be profoundly 

surprising to conclude that first person emotional experience is 3-dimensional, that these are the 

dimensions, or that they are primarily represented in TPJ. You could argue: no other study has ever 

measured the difference between positive and negative first person experiences as well as this study. 

But I don’t agree.  

(Also FWIW, a recent study from Luke Chang’s group, using natural movie watching, and similar types 

of analyses, concluded that first person positive vs negative experiences during movie watching is 

represented in medial prefrontal cortex, not TPJ.)  

 

Plus, there are probably hundreds of studies by now showing that TPJ Is strongly modulated by the 

states we infer and attribute to others; and a few studies showing that the dimensions of others 

mental states can be decoded from patterns in TPJ (and related areas).  

 

So: are the control analyses included here strong enough to override all that prior information, and 

support the conclusion that this study measured first-person experience? I don’t think so. The 

evidence is:  

 

— third person attributions to characters, taken from another study that measured (discrete, AFC) 

emotion attributions characters in short disconnected scenes, explain almost as much variance, voxel 

wise, as the continuous first person ratings (with which they share substantial variance — maybe 

almost as much as possible given the reliability of the first person emotions — this was not clear). 

(FWIW: this comparison was not a fair test of the hypothesis that the TPJ dimensions reflect 3rd P 

attributions — because lots of emotion and mental state attributions may only be possible when the 

scene is viewed in narrative context. Chopping the movie into short segments disrupts not only first 

person emotion, but also the third person attributions on which those first person emotions are 

based).  

 

— BUT, the dimensions derived from the third person model are not mapped continuously across 

cortex. 

 

By itself that is not enough of an argument to convince me that you have found the neural basis of 

first person emotional experience.  

 

Here’s my most deep concern. Like many papers that claim to be about first person emotion, I suspect 

that this study has discovered dimensions that are highly context specific and dependent. If the 



authors could use their 3 PCs as an encoding model, and predict patterns of activation in a completely 

different task, I’d be much more impressed. They could try any of the emotion induction datasets — 

photos, movies, or whatever. They might also try one of Mark Thornton’s datasets, and see if this 

model generalizes to another 3rd party context. Either way, a generalization to a new stimulus context 

is the only way to check the power of this model as an actual encoding model of emotion 

understanding / experience.  

 

That doesn’t seem to be the authors intention. So, I think the main claim of this paper honestly should 

not be about first vs third person emotions (which are anyway very highly correlated during movie 

viewing), but about the mapping of continuous, abstract dimensions of mental life onto cortex. 

Indeed, the main claim of this paper is not that emotion-relevant information is spatially organized in 

RTPJ (others have shown this); but a proposal for a specific spatial layout of the first three 

dimensions, and their content.  

 

Given that claim, I think there are still some issues with this current analysis.  

— I actually find it disconcerting that the analysis gives the same results in the volume vs on the 

cortical sheet. This paper is making a claim about geometry. Those are very different geometries of 

voxels. Finding the same results both ways is not really reassuring.  

— I am not convinced that the low-level feature models have sufficiently explained the stimulus-

feature confounds of the high-level dimensions. From the description, it seems that they used the 

vector of volume energy and contrast energy as the only low level features. (Were these convolved 

with an HRF? I couldn’t tell). But the variance explained by these models is very low (max R^2 of 

0.05, in A1 — less variance explained that by the emotion model in TPJ!) That suggests that these low 

level feature models aren’t capturing much low-level variance — and therefore that just regressing 

them out of the rest of the neural signal is not sufficient to ensure that there are not stimulus 

confounds.  

 

 

 

Reviewer #3:  

Remarks to the Author:  

The authors have provided a thorough and rigorous response to the issues I raised in my initial 

review. The results of their additional analyses substantially strengthen the paper in a number of 

ways. First, comparing the temporal dynamics of emotions in the movie to those in real-life (as 

measured by experiencing sampling) suggests a strong correspondence between the two, despite the 

differing time scales involved. This strengthens the generalizability of the observed results. Second, 

the factor rotation analysis provides convergent evidence that the dimensions specified by the PCA are 

indeed those canonically represented by the brain. Moreover, this analysis is a valuable 

methodological innovation in itself. Third, although the examination of character's emotions replicates 

previous findings implicating the TPJ in theory of mind, the authors also find that the emotions of 

others are not topographically mapped across the cortex, unlike participants' own subjective emotions. 

This helps to rule out the possibility that the present results are entirely the result considering others' 

emotions. Finally, the noise ceiling analysis suggests that the emotion dimensions model the authors 

test explains considerably more of the (reliable) variance in brain activity than examination of raw 

R^2 would suggest. This results indicates that their model accounts for a considerable fraction of 

activity in the TPJ. Together these secondary analyses and the other changes the authors have made 

in response to my and the other reviewers' concerns considerably increase my confidence in the 

soundness and generalizabilty of their conclusions. As such, I am happy to recommend this research 

for publication.  

 

Mark Thornton  
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Reviewer #1 (Remarks to the Author): 

 

I would like to thank the authors for addressing my prior concerns. 

 

We thank the Reviewer for his/her comment. 

 

Reviewer #2 (Remarks to the Author): 

 

I’ve read the revised manuscript, and the response to reviewers. I think this research is interesting 

and potentially important, but the interpretation has substantial limits.  

 

We thank the Reviewer for considering our research of interest and potentially important. We 

acknowledge that not using a completely independent dataset to test the generalizability of the 

obtained results may represent a limitation of our study. Therefore, we have further emphasized this 

aspect in the Discussion section. 

At the same time, we have given serious consideration to the issues raised by the Reviewer about 

the interpretation of the current findings and we believe that, in this reply, we address these 

concerns and clarify why we are confident about its appropriateness. 

Moreover, given the novelty of our findings, we agree that additional independent studies are 

needed to corroborate our conclusions, thus, we have reframed the manuscript along the lines 

suggested by the Reviewer. 

Hereby, we provide a point-by-point reply to all the issues raised. 

 

First, the authors claim that their results reflect the first-person subjective experience of the 

subjects, but I continue to doubt it. 

 

Although in theatrical performances and movies, actions and dialogues are not directed toward the 

observer, the evocative events represented on stage do elicit first person emotional experiences. 

Indeed, since the very early days, the aim of theatrical performances has been to induce strong 

emotional responses in the audience. For instance, as concerns the tragedy, Aristotle wrote (Poetics 

[1453b]): "Fear and pity sometimes result from the spectacle and are sometimes aroused by the 

actual arrangement of the incidents, which is preferable and the mark of a better poet. The plot 

should be so constructed that even without seeing the play anyone hearing of the incidents 
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happening thrills with fear and pity as a result of what occurs. So would anyone feel who heard the 

story of Oedipus". 

In line with this, in our behavioral experiment we explicitly asked individuals to detail their own 

subjective emotional experience, during the watching of an emotionally-charged movie. As in the 

vast majority of human studies, we presume that subjects are aware of, honest about, and able to 

describe their percept and, based on this, we do not see any reason to doubt of their reports about 

experienced emotions. In addition to the above considerations, one may ask, is not crying because 

of characters' misfortunes a subjective experience that spontaneously emerges? Of course, the 

sadness we perceive is mediated by emotional contagion and empathy, yet this is not sufficient to 

question that what one is feeling is not subjective. Which other objective reasons could motivate 

our crying? As humans, we are able to control our emotional responses (Ochsner & Gross, 2005; 

Gross & Thompson, 2007; Kohn et al., 2014), even though in most of the cases it requires a reason 

(e.g., social pressure), time and effort. 

We can imagine that this view does not perfectly match the perspective of the Reviewer, but we 

also believe that there is no evidence that the subjective affective states mediated by emotional 

contagion and empathy are substantially different from those induced by actions directed toward 

oneself. In conclusion, it is very likely that when subjects are asked to report their own emotional 

experience, they are actually describing their feelings and not merely labeling portrayed emotions. 

 

For a start, there have been literally hundreds, maybe thousands, of studies of the neuroscience of 

first person emotion, using a whole range of direct induction techniques (IAPs photos, music, 

memories, game experiences, etc etc etc). 

 

We agree with the reviewer that IAPS stimuli have been successfully employed in thousands of 

researches and represent a robust method to induce specific emotional states in the observer. In this 

regard, we would like to emphasize that the IAPS collection includes images showing actions 

directed toward the observer, but also pictures of events that are just witnessed (as happens when 

subjects are watching a movie). Importantly, when subjects are exposed to these stimuli their 

subjective report is identical. To prove this, we are attaching below two IAPS images: in the first 

image (A), a gun is pointed toward who is watching and, despite one can discuss the ecological 

validity of the stimulus, it is clear that such a negative action is directed toward him/her. In contrast, 

in the second image (B), a person is threatening another one using a gun with no involvement of the 

observer in the scene (similarly to what is represented in a movie scene). Although these two 

pictures are completely different with respect to the number of actors, the underlying mentalization, 
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and several other aspects, the reported subjective experience does not significantly differ. This is 

testified by the nearly indistinguishable valence and arousal scores (Lang et al., 2005): valence 

image A = 2.83 ± 1.79, arousal image A = 6.54 ± 2.61; valence image B = 2.16 ± 1.41, arousal 

image B = 6.53 ± 2.42. 

 

 

 

In light of this, one could argue that the concerns raised by the Reviewer about the ability of our 

paradigm to elicit first-person subjective experiences apply to "direct induction techniques" (e.g., 

IAPS) as well. Indeed, as the action shown in picture B is neither adverse nor favorable to us we 

could just ignore it the same way we could ignore touching scenes represented in a movie. Yet we 

are not able to do so, unless we put some effort into it. Therefore, rather than a matter of subjective 

experience versus portrayed emotions, we believe that the issue raised by the Reviewer may be 

more related to whether first-person subjective emotional experiences are induced by stimuli 

directed toward the observer or by something that he/she is witnessing. However, based on the data 

reported above (i.e., identical valence and arousal scores for image A and B) this appears to be a 

point of no more than modest importance. Also, as this point does not challenge the validity of 

reports obtained by hundreds of studies based on the IAPS collection, it should not be considered an 

issue with respect to the interpretation of our results. 

 

From that literature, it would be profoundly surprising to conclude that first person emotional 

experience is 3-dimensional, that these are the dimensions, or that they are primarily represented in 

TPJ. You could argue: no other study has ever measured the difference between positive and 

negative first person experiences as well as this study. But I don’t agree. 
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(Also FWIW, a recent study from Luke Chang’s group, using natural movie watching, and similar 

types of analyses, concluded that first person positive vs negative experiences during movie 

watching is represented in medial prefrontal cortex, not TPJ.) 

 

As far as the number of emotion dimensions is concerned, a large body of literature tried to 

establish how many fundamental dimensions are required to describe affective states (see 

Introduction section of the manuscript). It is important to note that, regardless of the adopted 

taxonomy, early seminal studies reported that a small number is required: for instance, 2 or 3 in the 

circumplex model of affect (i.e., valence, arousal and dominance; Russell & Mehrabian, 1977; 

Russell, 1980) and 4 in the model proposed by Fontaine and colleagues (2007; 

evaluation/pleasantness, potency-control, activation-arousal, and unpredictability). However, in 

accordance with recent works, the affective space seems to have much higher dimensionality, as 

compared to these 2-, 3- or 4-dimensional descriptions. By asking individuals to watch a large 

number of brief, yet evocative, movies and to report their subjective emotional experience, Cowen 

and Keltner (2017; hereinafter C&K) discovered 27 "categorical dimensions" (e.g., awe, horror, 

romance). In this regard, what is crucial for the correct interpretation of our work is that the 27-

dimensional C&K affective space should be compared with the 15-dimensional affective space 

represented in Forrest Gump (see t-SNE methods), and not with the 3-dimensional organization of 

emotion dimensions. In fact, in C&K (2018), the authors clarify that "dimensionality" of the 

affective space is obtained by "finding [...] linearly separable patterns of emotion judgments", 

which is 15 in our work (and 27 in C&K, 2017), whereas its "conceptualization" is "modeling 

whether domain-general concepts drawn from theories of emotional appraisal/construction 

(valence, arousal, dominance, etc.) explain reported emotion categories" (i.e., "affective 

dimensions" in C&K, 2017). In our study, conceptualization refers to the three emotion dimensions 

of polarity, complexity and intensity. Hence, by adopting the C&K terminology, we can affirm that 

the affective space elicited by Forrest Gump is described by 15 categorical dimensions and that the 

conceptualization of these categories is three-dimensional and topographically encoded in the brain. 

In addition, in the original paper, the authors report that 14 affective dimensions explain less 

variance than the 27 categorical dimensions (i.e., Figure 3 in C&K, 2017), and one could use this 

evidence to indirectly question the existence of emotion dimensions in the brain. It should be noted, 

though, that in our study emotion dimensions are derived from the same behavioral reports that led 

to the 15 distinct affective states, while in C&K (2017), ratings of affective dimensions and 

categorical dimensions were collected in separate surveys. Thus, the difference between the two 

models (i.e., affective dimensions versus categorical dimensions) in explaining subjective reports 
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could be interpreted as the fact that it is harder for naive subjects to describe their own emotional 

experience through questions based on psychological constructs, rather than employing common 

labels that share the same meaning across individuals (Izard, 2007). In other words, when presented 

with a short movie of a baby vomiting (see https://s3-us-west-1.amazonaws.com/emogifs/map.html) 

it would be harder to describe our own emotional experience by answering questions such as "To 

what extent does this make you feel like a sense of commitment to an individual or creature?" for 

the commitment dimension (for the complete list of questions see Supplementary Table 2 of C&K, 

2017), as compared to just report that we are "disgusted" (for the complete list of categories see 

Supplementary Table 1 of C&K, 2017). Please note that we mentioned this aspect in the Discussion 

section of the originally submitted manuscript (pag.15 of the first submission and pag.21 of this 

revision: "Moreover, while the definition of basic emotions is common across individuals, ratings 

based on emotion dimensions require participants to be acquainted with the meaning of 

psychological constructs"). 

 

As far as the characteristics of emotion dimensions are concerned, the Reviewer argues that 

polarity, complexity and intensity are not adequate to describe the emotional experience and 

hypothesizes that they strongly depend on the context (i.e., from the stimulus we used; see below: 

"[...]this study has discovered dimensions that are highly context specific and dependent [...]"). 

Nonetheless, we already discussed in the manuscript (i.e., Discussion section; Polarity, Complexity 

and Intensity of the Emotional Experience paragraph, pag.22) the correspondence between polarity 

and valence, and between intensity and arousal. Both valence and arousal have been widely adopted 

to represent subjective affective states in the emotion dimension literature (see for instance Barrett 

& Russell, 1999; Russell, 2003) and, thus, it would not be surprising that cardinal dimensions, 

mapping important and general characteristics of the affective experience (i.e., pleasantness and 

relevance/strength), are actually represented in the brain (see for instance Lane et al., 1999;Anders 

et al., 2004; Lewis et al., 2006). Therefore, what depends on the context is the relationship between 

the action represented on the screen and how we personally feel with respect to that action. What 

does not depend on the context, instead, is our ability to describe whether that action makes us feel 

happy or sad. Regarding complexity, even though the literature is not as rich as for valence and 

arousal, similar dimensions have been reported in recent studies on mental models of emotion. For 

instance, the work by Thornton and Tamir 2017 (previously hypothesized also in Tamir et al., 2016) 

describes the human mind dimension as one of the four cardinals and their definition is very similar 

to what we intend here for complexity. In accordance with T&T interpretation, this dimension maps 

states "[...] purely mental and human specific vs. bodily and shared with animals [...]" (pag.5982 in 
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T&T 2017). Please note that other than valence and social impact (the latter representing "[...] high 

arousal, social vs. low arousal, asocial [...]" states; pag.5982 in T&T 2017), their fourth dimension 

is the one that distinguishes emotions from cognitions. Therefore, the number and characteristics of 

the dimensions they propose as relevant for mental models of affective states match those revealed 

here. 

 

Regarding the Reviewer statement that emotion dimensions "are primarily represented in TPJ", this 

does not reflect what we have reported in the manuscript. Indeed, we do not claim that polarity, 

complexity and intensity are primarily represented in right TPJ, but that exclusively within this 

region all the three emotion dimensions are topographically mapped (as also clearly represented in 

Supplementary Figure 6). That emotion dimensions fit brain activity in right TPJ is in line with 

previous findings, as we indicated in the Introduction section of the manuscript (see Nummenmaa 

et al., 2012). Instead, the novelty of our study is that within a region involved in processing of 

emotions, empathy and, of course, mentalization, subjectively reported affective states are mapped 

following the same principle that guides the arrangement of visual and auditory stimuli in sensory 

cortical areas. 

 

As for the statement "You could argue: no other study has ever measured the difference between 

positive and negative first person experiences as well as this study. But I don’t agree", we would 

like to emphasize that we never affirmed that our behavioral paradigm is the best possible method 

to record the subjective emotional experience. As a matter of fact, we do not have data to support 

this statement. At the same time, there is no evidence that our method is inferior to any other 

paradigm. Therefore any further discussion about this issue is, indeed, just a matter of opinion 

unsupported by data. 

 

As far as the Chang preprint (https://doi.org/10.1101/487892; bioRxiv) is concerned, we very much 

appreciated the elegant paradigm and the sophisticated methods. Specifically, Chang and 

collaborators recorded brain activity while subjects were viewing a 45-minute television drama. An 

independent group of participants was also asked to watch the same drama and periodically pause 

the movie to report their subjective experience. Ratings were given based on 16 emotion categories 

(e.g., disgust, joy, fear; Figure 6D of Chang et al., 2018) and dimensionality reduction revealed 2 

emotion-rating components: one mapping positive and the other negative emotions. The timecourse 

of these two principal dimensions was associated with inter-subject correlation in vmPFC. 
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In light of this, we must admit that we have some difficulties in fully comprehending the Reviewer 

argument in citing the results of Chang preprint, to question the interpretation of our results. First, 

as in both Chang and our study participants were asked to describe their own subjective experience 

during movie watching, why should one consider reports collected by Chang as first-person 

subjective experience and those in our study not? For instance, in which way the scene portraying 

the star quarterback suffering an injury (Figure 6A of Chang et al., 2018) is substantially different 

from the Forrest Gump scene in which Bubba dies? Second, as both studies found correspondence 

between affective components and brain activity, for which reason one should consider the 2 

dimensions reported by Chang an adequate model to explain the subjective emotional experience 

and the 3 dimensions reported here not? Moreover, to cross-validate their results, Chang and 

colleagues recruited a second group of subjects, who watched the exact same drama in the fMRI 

setting. Thus, for which reason one should believe that their (but not our) findings generalize when 

using direct induction techniques and completely different stimuli? 

In summary, the concerns raised by the Reviewer about our experimental paradigm, which appears 

to motivate his/her skepticism with respect to the interpretation of our results, do apply to the Chang 

et al. study as well. As pointed out by the Reviewer, the main difference between the two studies is 

that first person experience maps in vmPFC for Chang and in TPJ in our case. This is, however, a 

post hoc ergo propter hoc sophism: Chang paradigm maps subjective experience because vmPFC is 

engaged, whereas the interpretation of the current findings is not convincing because TPJ is 

involved. Of note, though, vmPFC was the only brain region tested (other than V1) in the Chang 

preprint (please note that here we tested emotion dimension gradients also using the searchlight 

approach). 

Moreover, other than the points raised above, we would like to emphasize that both vmPFC and 

TPJ are integrative transmodal areas (Mesulam, 1998; Margulies et al., 2016) and are thus involved 

in a large number of distinct tasks. For instance, a very recent meta-analysis (Lieberman et al., 

2019) reported that only 6%, 12% and 11% of dmPFC, amPFC and vmPFC voxels were 

specifically associated to the subjective experience of emotions (Figure 4 of Lieberman et al., 2019 

and also reported as limitation in the Discussion section of Chang et al., 2018). 

For all these reasons, we do not see any motivation to use the Chang preprint as an argument to 

support the fallacy of our interpretation. 

 

Plus, there are probably hundreds of studies by now showing that TPJ Is strongly modulated by the 

states we infer and attribute to others; and a few studies showing that the dimensions of others 

mental states can be decoded from patterns in TPJ (and related areas).  
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The role of right TPJ activity in inferring and attributing mental states to others is well documented. 

Indeed, many fMRI studies demonstrated higher BOLD activity in this region for the "others > self" 

mentalization contrast. The question, however, is whether right TPJ is exclusively involved in the 

attribution of mental states to others. A recent electrocorticography (ECoG) study from Matthew 

Lieberman's group shows that right TPJ is similarly engaged during mentalization about oneself and 

others. Specifically, no differences in onset, peak or offset latency were found, and responses of 

right TPJ anticipated those in dmPFC and vmPFC (for further details, see: 

https://kevmtan.github.io/files/KTan_iEEGmentalizing_poster_SANS2019.pdf). These results 

suggest that this brain area is not only involved in the attribution of mental states to others, but also 

in the mentalization of self, as also discussed by the authors: "Self & Other mentalizing appear to 

rely on common neural mechanisms –BOLD differences may arise from computational load 

(knowing oneself better than others)". These novel, though preliminary, results are in line and 

support what we report here: the description of subjective emotional experience requires 

mentalization about oneself and this process, carried out by our subjects during the behavioral 

experiment, produces emotion features that map onto the temporo-parietal cortex of independent 

individuals, who were not explicitly asked to mentalize, but simply to watch and "enjoy" the movie. 

 

So: are the control analyses included here strong enough to override all that prior information, and 

support the conclusion that this study measured first-person experience? I don’t think so. The 

evidence is: 

 

— third person attributions to characters, taken from another study that measured (discrete, AFC) 

emotion attributions characters in short disconnected scenes, explain almost as much variance, 

voxel wise, as the continuous first person ratings (with which they share substantial variance — 

maybe almost as much as possible given the reliability of the first person emotions — this was not 

clear). (FWIW: this comparison was not a fair test of the hypothesis that the TPJ dimensions reflect 

3rd P attributions — because lots of emotion and mental state attributions may only be possible 

when the scene is viewed in narrative context. Chopping the movie into short segments disrupts not 

only first person emotion, but also the third person attributions on which those first person 

emotions are based). 

 

We thank the Reviewer for raising this issue, which allows us to clarify an important 

methodological aspect that we missed to detail in the previous round of revision. As a matter of 



 9

fact, Labs and colleagues (2015) divided the entire movie (120 min) in 205 segments, each having 

the average duration of ~35 seconds. Importantly, in their editing the authors respected the narrative 

of movie scenes, so that the raters could have a clear understanding of what was shown on the 

screen. For instance, the segment in which Forrest is in front of Jenny's grave is a single cut with a 

duration of ~131s (for a complete list see: 

https://f1000researchdata.s3.amazonaws.com/datasets/6230/94134be1-dbac-4ff6-9ce9-

22c8a0fecfe2_gump_emotions.zip). Indeed, seeing a man in tears in front of a grave is more than 

sufficient to understand that he is experiencing sadness. Similarly, seeing the two main characters 

running toward each other while the crowd is applauding is enough to recognize that they are 

happy. We have now added this important information in the revised version of the manuscript 

(Methods section, Right Temporo-Parietal Gradients and Portrayed Emotions paragraph; pag.33). 

In addition, 50% of movie scenes lasted longer (i.e., 35s) than the 20/30s average task period used 

in block-design fMRI paradigms mapping ToM (i.e., 20/30s task period in block-design 

paradigms), as well as emotion attribution (see for instance Skerry & Saxe 2015, in which written 

stories were presented for 13s). Therefore, we are confident that the descriptions obtained from 

Labs and colleagues (2015) represent an appropriate control model of third-person emotion 

attribution to movie characters. 

 

— BUT, the dimensions derived from the third person model are not mapped continuously across 

cortex.  

By itself that is not enough of an argument to convince me that you have found the neural basis of 

first person emotional experience.  

 

Indeed, our results show that (1) descriptions based on third-person emotion attribution are not 

topographically encoded within right TPJ, whereas (2) subjective reports map along three emotion 

dimension gradients within the exact same region. After thorough consideration of the issues raised 

by the Reviewer, we respectfully believe that none of those may significantly affect the 

interpretation of the results that we are proposing in this manuscript. At the same time, we do 

recognize that given the novelty of our findings, additional and independent studies are required to 

corroborate the current interpretation. For the above consideration, we reframed the manuscript to 

incorporate the indications provided by the Reviewer. 

 

Here’s my most deep concern. Like many papers that claim to be about first person emotion, I 

suspect that this study has discovered dimensions that are highly context specific and dependent. If 
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the authors could use their 3 PCs as an encoding model, and predict patterns of activation in a 

completely different task, I’d be much more impressed. They could try any of the emotion induction 

datasets — photos, movies, or whatever. They might also try one of Mark Thornton’s datasets, and 

see if this model generalizes to another 3rd party context. Either way, a generalization to a new 

stimulus context is the only way to check the power of this model as an actual encoding model of 

emotion understanding / experience.  

 

As described in the manuscript (Discussion section; Polarity, Complexity and Intensity of the 

Emotional Experience paragraph, pag.22) and reported above in this letter (pag.5), polarity and 

intensity relate to the valence and arousal of the emotional experience, respectively. Therefore, 

these two dimensions map general characteristics of affective states, which have been reliably used 

in the emotion literature (Barrett & Russell, 1999; Russell, 2003). Further, previous fMRI 

researches already demonstrated that valence and arousal are actually represented as cardinal 

dimensions in the brain (Lane et al., 1999;Anders et al., 2004; Lewis et al., 2006), including within 

right TPJ (Kensinger & Schacter, 2006; Nummenmaa et al., 2012). Altogether, there is no 

indication that these two affective dimensions depend on the context (i.e., the movie employed in 

the current study) and could not be retrieved using different stimuli. As far as complexity is 

concerned, as already highlighted above (pag.5 of this reply letter), independent relevant studies 

(Tamir et al., 2016; Thornton & Tamir, 2017) considered a similar dimension as crucial for the 

mental representation of emotions. We now report in the revised version of the manuscript the 

parallel between complexity and the human mind dimension described in T&T 2017 (Discussion 

section, Polarity, Complexity and Intensity of the Emotional Experience, pag.22-23). 

All that considered, however, we certainly agree with the Reviewer that independent replications 

are desirable and important. For this purpose, we provided the code to estimate the significance of 

gradients, so that independent groups may test whether the topographic organization of right TPJ 

can be revealed in other datasets and with different stimuli. This aspect has been further emphasized 

in the Limitations paragraph of the revised Discussion section (pag.24). 

 

That doesn’t seem to be the authors intention. So, I think the main claim of this paper honestly 

should not be about first vs third person emotions (which are anyway very highly correlated during 

movie viewing), but about the mapping of continuous, abstract dimensions of mental life onto 

cortex. Indeed, the main claim of this paper is not that emotion-relevant information is spatially 

organized in RTPJ (others have shown this); but a proposal for a specific spatial layout of the first 

three dimensions, and their content.  
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The present study demonstrates that affective states reported by our subjects, as well as emotions of 

movie characters, are associated with changes in right TPJ activity. Yet, only subjective reports are 

topographically mapped within this region along three cardinal emotion dimensions. We believe 

that one convincing interpretation of these findings is that portrayed emotions fostered empathy and 

emotional contagion in our subjects, which likely explains the positive correlation between 

subjectively experienced and portrayed emotions. These mechanisms may produce a remapping of 

events not directed toward the observer within a subjective framework that has its anatomo-

functional counterpart in the three-dimensional topographic organization of right TPJ. We have now 

better detailed this aspect in the revised version of the manuscript (Discussion section, Right 

Temporo-Parietal Gradients Do Not Simply Encode Portrayed Emotions paragraph; pag.23). 

In support of the above interpretation, we have provided additional arguments detailed in this reply 

letter. 

 

In summary: 

 

1) Over 2,500 years of philosophical reasoning on theatrical representations, as well as consolidated 

assumptions of subjects' compliance, awareness and honesty support the claim that when 

individuals are asked to watch a movie and report their own subjective emotional experience, they 

actually do so. 

 

2) Witnessing evocative events produces first-person affective responses, independently from the 

direct/indirect involvement of the observer in the scene (see IAPS A and B example above). This 

assumption is not exclusive of our paradigm as many of the so-called direct-induction techniques 

(e.g., IAPS) employ the same mechanism to elicit emotions. 

 

3) The lower-dimensional cortical representation of affective states does not imply that only a small 

number of distinct emotion categories are mapped in the brain. Forrest Gump elicited 15 distinct 

states and their conceptualization (i.e., polarity, complexity and intensity) is topographically 

represented within right TPJ. 

 

4) Although we did not use other stimuli to assess the generalizability of the three emotion 

dimensions, they do reflect general emotion properties that are very likely independent from the 

context. Polarity and intensity represent the pleasantness and strength/relevance of the experience, 
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respectively. For complexity, recent works on mental models of emotion (Thornton & Tamir, 2017) 

included an analogous component. 

 

5) Although the involvement of right TPJ in the attribution of mental states to others is well 

documented, whether this region is exclusively involved in this process has still to be determined. 

As a matter of fact, preliminary data by the Lieberman's group using intracranial recordings 

demonstrate that this region is similarly involved in mentalization of oneself and others. 

 

6) In splitting the drama, Labs and colleagues respected the narrative of each movie scene. This 

allowed participants to clearly understand what was presented on the screen. Also, the average 

duration of movie segments is longer than task periods of block-design paradigms commonly used 

in theory of mind and emotion attribution experiments. 

 

Given that claim, I think there are still some issues with this current analysis.  

— I actually find it disconcerting that the analysis gives the same results in the volume vs on the 

cortical sheet. This paper is making a claim about geometry. Those are very different geometries of 

voxels. Finding the same results both ways is not really reassuring. 

 

We would like to point out that the results are not identical, as there is an improvement both in 

effect size and significance for all the three emotion dimension gradients when accounting for 

cortical folding. Indeed, gradient estimation of polarity was ρ = 0.241; p = 0.041 using the 

volumetric pipeline and ρ = 0.248; p = 0.026 using the surface method. Complexity gradient yielded 

ρ = 0.271; p = 0.013 using Euclidean distance and ρ = 0.314; p = 0.001 adopting the Dijkstra 

metric; similarly, intensity went from ρ = 0.229; p = 0.049 to ρ = 0.249; p = 0.013. 

Overall, the impact of surface-based analysis on gradient estimation is positive and, intuitively, as 

the difference between the two methods increases with the number of cortical folds. Therefore, the 

magnitude of the effect is likely proportional to the size of the region of interest. One can argue that 

with relatively small ROIs (as in our study) the Euclidean and Dijkstra metrics converge, whereas 

for longer distances (as in Margulies et al., 2016) the two methods would produce appreciably 

different results. To prove this, we have measured the relationship between the volume- and the 

surface-based methods as function of anatomical distance. Thus, we sampled all voxel pairings 

having specific anatomical distance based on the Euclidean metric. We then measured the Dijkstra 

distance of the same voxels and computed Spearman correlation and root mean squared error 

(RMSE) of the two estimates. This procedure was repeated for anatomical distances ranging from 3 
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(i.e., minimum voxel size) to ~150mm (i.e., the maximum possible distance within an hemisphere). 

The results reported in the figure below demonstrate that for our definition of right TPJ (15mm 

radius sphere) the average correlation between the two metrics was ρ ≈ 0.70 and the average error 

in the Euclidean estimate is RMSE ≈ 6mm. As can be appreciated from the attached figure, the 

correlation drops and RMSE rapidly increases for longer anatomical distances, reaching a plateau at 

~ 65mm distance. This further evidence clarifies that Euclidean and geodesic geometries are very 

different for long distances, but similar for shorter ones and demonstrates how this property relates 

to our findings. 

 

 
— I am not convinced that the low-level feature models have sufficiently explained the stimulus-

feature confounds of the high-level dimensions. From the description, it seems that they used the 

vector of volume energy and contrast energy as the only low level features. (Were these convolved 

with an HRF? I couldn’t tell). But the variance explained by these models is very low (max R^2 of 

0.05, in A1 — less variance explained that by the emotion model in TPJ!) That suggests that these 

low level feature models aren’t capturing much low-level variance — and therefore that just 

regressing them out of the rest of the neural signal is not sufficient to ensure that there are not 

stimulus confounds.  

 
In this study, we regressed out low-level acoustic (i.e., volume energy) and visual (i.e., Gabor 

contrast energy) features of the movie from brain hemodynamic activity. These regressors of no 

interest were not convolved using the HRF, as they were lagged and smoothed in time, similarly to 

emotion ratings. This approach is in line with the pipeline proposed by the group of Jack Gallant 

(i.e., Huth et al., 2016). 

To further address the Reviewer concern regarding the impact of low-level features on the existence 

of right TPJ emotion dimension gradients, we first built more complex descriptions of low-level 

visual and acoustic features of Forrest Gump. We then regressed out this information from BOLD 



 14

signal, similarly to what we did in the previous version of the manuscript, and tested the 

significance of the polarity, complexity and intensity gradients. 

We selected spectral power density as a model of low-level acoustic information (de Heer et al. 

2017), and GIST descriptors for visual features (Oliva & Torralba, 2001; Rice et al., 2014; 

Handjaras et al., 2017). We obtained the power spectrum for each 2 s segment of the audio track 

and calculated the power in dB units. The procedure we used is identical to the one described in de 

Heer and colleagues (2017): Welch method, Gaussian window with SD of 5 ms, length 30 ms, 1 ms 

spacing between windows. The resulting model comprised 449 columns and described the power 

spectrum of the acoustic signal ranging from 0 Hz to 15 kHz in steps of 33.5 Hz. 

For the visual model, we segmented each movie frame into a 4x4 grid and sampled the responses to 

Gabor filters having four different sizes and four possible orientations. This procedure generated a 

vector of 256 elements, which described each video frame in terms of spatial frequencies, Gabor 

filter orientations and positions in the visual field. All the GIST descriptors were averaged within a 

2 s time window. 

Timeseries of 449 acoustic and 256 visual features were lagged by 2s and temporally smoothed 

using a 10s window, similarly to the emotion ratings model. 

As all our procedures rely on multiple linear regression, which advocate for the use of orthogonal 

predictors, we performed a PCA on the acoustic and visual models separately and isolated the first 

PCs explaining more than 90% of the total variance. Components were then aggregated in a single 

model and fitted into brain activity to ensure that they explain more variance than the models we 

employed in the previous submission. 

As a result of this procedure, we fitted 21 PCs describing the low-level acoustic and visual features 

of the movie and more than doubled the explained variance in early sensory cortical areas: 12% in 

Heschl's gyrus and 9% in pericalcarine cortex. Of note, we also performed noise ceiling estimation 

for the highest R2 voxels, obtaining 0.268 and 0.172 as upper and lower bounds in auditory cortex 

and 0.412 and 0.330 in early visual cortex. These numbers suggest that our new model explains up 

to 70% and 27% of brain activity in early auditory and visual areas, respectively. Please note that 

the definition of a computational model of low-level visual features able to explain the vast majority 

of early visual cortex activity during naturalistic stimulation (e.g., no fixation, continuous 

stimulation) is still recognized as one of the most challenging task in vision studies (Raz et al., 

2017). 

Most importantly, when we used the new model to regress out low-level stimulus features from 

brain activity, we confirmed the existence of the three emotion dimension gradients in right TPJ: 

polarity (ρ = 0.258, p-value = 0.031, 95% CI: 0.252 to 0.264), complexity (ρ = 0.261, p-value = 
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0.013, 95% CI: 0.254 to 0.267) and intensity (ρ = 0.270, p-value = 0.016, 95% CI: 0.264 to 0.277). 

Overall, this evidence indicates that the topographic organization of affective states in right TPJ 

cannot be explained by low-level sensory information confounds. 

This procedure and relative findings are now detailed in Supplementary Materials. 

 

 

Reviewer #3 (Remarks to the Author): 

 

The authors have provided a thorough and rigorous response to the issues I raised in my initial 

review. The results of their additional analyses substantially strengthen the paper in a number of 

ways. First, comparing the temporal dynamics of emotions in the movie to those in real-life (as 

measured by experiencing sampling) suggests a strong correspondence between the two, despite the 

differing time scales involved. This strengthens the generalizability of the observed results. Second, 

the factor rotation analysis provides convergent evidence that the dimensions specified by the PCA 

are indeed those canonically represented by the brain. Moreover, this analysis is a valuable 

methodological innovation in itself. Third, although the examination of character's emotions 

replicates previous findings implicating the TPJ in theory of mind, the authors also find that the 

emotions of others are not topographically mapped across the cortex, unlike participants' own 

subjective emotions. This helps to rule out the possibility that the present results are entirely the 
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result considering others' emotions. Finally, the noise ceiling analysis suggests that the emotion 

dimensions model the authors test explains considerably more of the (reliable) variance in brain 

activity than examination of raw R^2 would suggest. This results indicates that their model 

accounts for a considerable fraction of activity in the TPJ. Together these secondary analyses and 

the other changes the authors have made in response to my and the other reviewers' concerns 

considerably increase my confidence in the soundness and generalizabilty of their conclusions. As 

such, I am happy to recommend this research for publication. 

Mark Thornton 

 

We thank Dr. Mark Thornton for the positive evaluation of our work. 
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Reviewers' Comments:  

 

Reviewer #2:  

Remarks to the Author:  

I remain unconvinced that the authors have fairly tested the alternative hypothesis I proposed. 

Instead, they have either misunderstood the hypothesis, or deemed it to be a priori untenable. They 

cite Aristotle (!) as evidence that first and third person emotions are fundamentally and profoundly 

confounded in responses to drama -- if so, then it seems strange to me to use fMRI to "prove" that 

RTPJ represents the former and not the latter. If by contrast the distinction between first person 

emotions and third person emotion attributions is of high theoretical relevance (as suggested by the 

rhetoric of this paper), then I do not think the authors have shown that their results reflect first 

person emotions, for the same reasons I said last time.  

 

I am pleased that the authors have put effort into making their analysis pipeline easily accessible to 

others.  
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Reviewer #2 (Remarks to the Author): 
 
I remain unconvinced that the authors have fairly tested the alternative hypothesis I 
proposed. Instead, they have either misunderstood the hypothesis, or deemed it to be a 
priori untenable. They cite Aristotle (!) as evidence that first and third person 
emotions are fundamentally and profoundly confounded in responses to drama -- if 
so, then it seems strange to me to use fMRI to "prove" that RTPJ represents the 
former and not the latter. If by contrast the distinction between first person emotions 
and third person emotion attributions is of high theoretical relevance (as suggested by 
the rhetoric of this paper), then I do not think the authors have shown that their results 
reflect first person emotions, for the same reasons I said last time. 
 
We thank the Reviewer for this further comment on our manuscript. The reason for 
citing Aristotle was to emphasize that the aim of theatrical performances, and 
therefore of movies, has always been to induce strong emotional responses in the 
audience. At the same time, we recognize how difficult is to disentangle first-person 
experience from portrayed emotions, as many of the paradigms employed in 
psychological research require subjects to attend stimuli with no explicit involvement 
of the observer (e.g., a picture of a woman threatened by a burglar as in IAPS or 
Forrest kissing Jenny for the first time as in our movie).  
In our view, when subjects are presented with such stimuli and asked to describe their 
own emotions, what they report is a subjective experience. 
Nonetheless, we acknowledge that the association between subjective reports and 
characters' emotions, as well as differences in experimental setup may have affected 
the results obtained in the current study. Therefore, we agree that our findings may 
not provide the clearest support to the first person interpretation and we have thus 
rephrased the manuscript to highlight such a limitation. 
Thus, any clear first- vs third-person conclusion has been removed and explicit 
statements on the ambiguity around this interpretation have been added throughout 
the manuscript. Specifically, we have emphasized that first- and third-person 
experiences are tightly linked, by adding the following sentence to the Introduction 
section: 
 
"To understand our own emotions, as well as those of others, is crucial for human 
social interactions. Also, witnessing facts and events of others' life sometimes prompts 
inner reactions related to the beliefs, intentions and desires of actors. Through years, 
the relevance and pervasiveness of these aspects motivated the quest for models that 
optimally associate behavioral responses to emotional experiences". 
 
In addition, we have clearly indicated in the Discussion section that further studies are 
needed to disentangle the first- vs third-person interpretation, by adding the following 
statement: 
 
"Our findings suggest that emotion dimension gradients are better explained 
considering subjective reports of the affective experience, rather than by portrayed 
emotions. However, the significant association between subjective ratings and 
characters' emotions, as well as differences in rating scales and choice of emotion 
categories, limit the possibility to draw clear conclusions about the encoding of 
subjective experiences, rather than emotion attribution processes, in right TPJ 
topography". 
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Further, in the Results section, we have changed the title and toned down the 
paragraph: "Do emotion dimension gradients simply encode portrayed emotions?". 
Specifically, we have added the following sentences to highlight caveats relevant for 
the interpretation of the results: 
 
"Overall, these results suggest that right TPJ topography is better explained by 
subjective reports, rather than by information coded in portrayed emotions. At the 
same time, they may not provide the clearest support for the interpretation that 
emotion dimension gradients exclusively map first-person experiences. First, in social 
interactions, one's affective state is often influenced by facts and events of others' life. 
In our study, we observe a positive correlation between first-person reports and 
portrayed emotions (e.g., highest sadness score when Forrest holds dying Bubba) and 
the lack of complete orthogonality between models prevents the precise distinction of 
the two. Second, real-time subjective ratings and accurate descriptions of characters' 
emotions are better captured using different experimental paradigms. Indeed, our 
emotion ratings were continuously recorded during movie watching, whereas for 
portrayed emotions, individuals tagged movie scenes in a random order choosing 
among a wide array of labels and were allowed to watch each excerpt more than 
once. In light of all this, further studies are needed to clarify whether emotion 
dimension gradients exclusively encode first-person experience". 
 
I am pleased that the authors have put effort into making their analysis pipeline easily 
accessible to others. 
 
We thank the Reviewer for this comment. 
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